Managing Uncertainty with Intelligent Scenarios:
Intelligent Scenarios for What?

Mort Webster
Pennsylvania State University

EPRI’s 43rd Annual Seminar on Resource Planning for Electric Power Systems

@ PennState

October 29, 2024



Overview of This Presentation

 Problem Framing

* A Simple Example

* Critical Assumptions: Timing, Risk, and Constraints
 Overview of Scenario Reduction Methods

e Discussion

"‘o,’ PennState



Framing the Problem

So, you want to use scenarios...

» What Is your question?

1. What are different futures that could occur?

2. How can | compare the risks between Plan A and Plan B?
3. What is a plan that, on average, Is least cost?

4. What 1s a plan that protects me from the “worst case™?

5

. Are there strategic near-term opportunities to hedge against
uncertainty?
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Framing the Problem

Each question requires:
» A different set of scenarios

» A different analysis/solution method
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[llustrative Example: ERCOT

 Based on ERCOT

2018 existing generation mix
o Omit zonal/transmission constraints

« 15-year planning horizon
 Focus on two periods: 2030 and 2040

 Candidate Technologies
 Natural Gas Combined Cycle
* Natural Gas Combustion Turbine
* Nuclear
» Solar
* Wind )

NonErcot Zone1 Zone2 Zone3 Zoned4 Zone5 Zone6 Zone7 Zoned
Lee et al. (2022). iScience. 25. 103723.
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Problem Formulation

» Constraint:
» Meet a cumulative CO, emissions limit

 Uncertainties (only in 2040)
 Natural gas price
 Load growth
« Emissions limit quantity
« Cost factor for nuclear capital costs

San Antonio

* “Full” Uncertainty: 50 Scenarios
« Minimize expected total costs

* Meet emissions constraint in all scenarios

° A”OW V|O|at|0nS Wlth flxed penalty Non Ercot Zone1 Zone2 Zone3 Zoned4 Zone5 Zone6 Zone7 Zone8

Lee et al. (2022). iScience. 25. 103723.
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Three Conceptual Scenarios

Scenario A:
Low Natural Gas Price
Minimal Emissions Target

Scenario C:
High Natural Gas Price
Aggressive Emissions Target

Solar

Gas CC

Nuclear

Gas CC

Solar
GasCT

Share of Cumulative New Capacity (%)

Scenario B:
High Natural Gas Price
Minimal Emissions Target

Solar Gas CC

Gas
CT
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Scenario Set for Illustrative Example
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50 Scenarios: Randomly Sampled (Sobol sampling)
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) in Stage 1

New Capacity Added (GW

Monte Carlo Simulation: 50 Optimal Investment Plans

Stage 1 Investments Stage 2 Investments
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Each plan 1s optimal for one scenario; assumes “perfect information”
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Analysis Frameworks

1. Scenario Analysis (Three scenarios)
* Three investment plans

2. Monte Carlo Simulation (50 scenarios)
50 investment plans

3. Two-Stage Stochastic
* 2030 investments common across scenarios

Stage 1 Stage 2
Uncertain Parameters Uncertain Parameters

Stage 1 i l

Reference Scenario Existing ! Stage 1 Decision » Stage 2 Decision
Generators Stage 2
i Existing i
Generators
Stage 1 Stage 2

Investment Decisions Investment Decisions

10
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Analysis Frameworks

1. Scenario Analysis (Three scenarios)
« Three investment plans

2. Monte Carlo Simulation (50 scenarios)
* 50 investment plans

3. Two-Stage Stochastic
* 2030 investments common across scenarios

Scenario 1 ~ > Stage 1¢ Decision [ »| Stage 2 Itecision —
v v
7 v

Scenario 2 —| Stage 1 Decision » Stage 2 Decision | »
v v
v v

Scenario 3 ~ P Stage 1 Decision » Stage 2 Decision | »

v v
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Analysis Frameworks

1. Scenario Analysis (Three scenarios)
« Three investment plans

2. Monte Carlo Simulation (50 scenarios)
50 investment plans

3. Two-Stage Stochastic
e 2030 investments common across scenarios

v /

Scenario 1

v

Stage 2 Decision
/q g

g v

-

Scenario 2

v

—»| Stage 1 Decision | Stage 2 Decision

v

v

D

Scenario 3

v

‘| Stage 2 Decision

v

—_—»
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Optimal Investment Plan: Stage 1 (2030)
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Optimal Investment Plan: Stage 1 (2030)

40
° ® Monte Carlo
35 ¢ Reference
°
= 30r LR
O]
o > y
£ 207 * ° i * IS
= ) . .,
o
b 20 B d
‘O ®
S
8 15 ° °
= ° ¢ LY
[0)
Z 10 +
°
L o Reference Scenario (A) Plan
5 -
./
0 | | | [ ] o ® ... 7Y ® 'I | ._I
8 10 12 14 16 18 20 22 24 26

New Capacity of Natural Gas Combined Cycle (GW)



Optimal Investment Plan: Stage 1 (2030)
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Optimal Investment Plan: Stage 1 (2030)
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Option-value to investing in less CCGT in first stage; can build more later if needed
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Before Selecting Scenarios: Setting up the Problem

* Problem Formulation
« What is the question the analysis should address?

» Temporal structure
* When will information be updated? When can decisions be made?

* Treatment of Constraints
 Hard constraint? Penalty for violation? Uncertainty?

e Treatment of risk
 Risk measures in objective function
* Risk measures in constraints
 Alternative formulations for cost / constraint tradeoffs

"‘o,, PennState
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Managing Uncertainty: Question Types

« How do | compare performance of alternative investment plans?

 Simulate candidate plans under many future scenarios
 Construct risk profile (e.qg., distributions of cost, reliability) for each plan

» Monte Carlo Simulation

* How do I find a plan that does well on average?
» Stochastic Optimization — minimize expected costs

* How do | prepare for the worst-case?
» Robust Optimization

« What if | am risk-averse, but RO is too extreme?
» Stochastic Optimization with Contingent Value at Risk (CVaR)
» Stochastic Optimization with Chance Constraints
» Other hybrid approaches

"‘o,’ PennState
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Treatment of Risk

 Risk measures in objective function
 Distribution of total cost across scenarios

* Risk measures In constraints
* Distribution of violations across scenarios

 Depends on which constraints
* Meet demand
 Capacity reserve margin
« Emissions targets

0.035

0 50 100 150
Cost ($M)

e Alternative formulations for cost / constraint tradeoffs

"‘o,’ PennState
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Treatment of Risk in Objective Function

* Glven the cost from every scenario,
what do you want to minimize?

» Expected Costs

‘-3 PennState
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Treatment of Risk in Objective Function

* Glven the cost from every scenario,
what do you want to minimize?

* Expected Costs
 Minimize cost of worst scenario

Highest Cost
Scenario

CCCCC
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Treatment of Risk in Objective Function

* Glven the cost from every scenario,
what do you want to minimize?

* Expected Costs

* Minimize cost of worst scenario

* Minimize a percentile of the cost
distribution (VaR)

o5th Percentile
4_
|
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Treatment of Risk in Objective Function

* Glven the cost from every scenario,
what do you want to minimize?

* Expected Costs
 Minimize cost of worst scenario

» Target a percentile of the cost
distribution:

 Contingent Value at Risk (CVaR)

50 10 150
Cost ($M)

Average Loss
Above $100M
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Dimensionality Reduction: The Full Problem

Find minimum average cost investment plan considering:
* All possible long-term future scenarios (infinite)

» All planning periods (annual for 20 years)
 Recourse decisions every period

* All hours of each year for operations (8760)

* Many samples of forced outages for each hour/year/scenario

* All candidate units for addition or retirement

* Fully detailed operations model with all constraints (UC/OPF)

We cannot solve the full problem -> too large!

‘-3 PennState
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Dimensionality Reduction / Model Tractability

How can | solve GEP under uncertainty in a reasonable amount of time?

« Reduce the number of elements in one or more of :
* Number of future scenarios of long-term uncertain parameters
* Number of operational hours per planning period
* Number of planning periods
* Number/resolution of candidate resources

« Simplify operations model
* Fewer constraints
« Aggregate resolution (time, spatial)

» Use decomposition scheme to solve large problem efficiently
 Can include more scenarios / hours

"‘o,’ PennState



Dimensionality Reduction / Model Tractability

How can | solve GEP under uncertainty in a reasonable amount of time?

» Reduce the number of elements in one or more of :
=) « NUmMber of future scenarios of long-term uncertain parameters
mmmmm) « Number of operational hours per planning period
* Number of planning periods
* Number/resolution of candidate resources

» SImplify operations model
 Fewer constraints
» Aggregate resolution (time, spatial)

» Use decomposition scheme to solve large problem efficiently
 Can include more scenarios / hours

‘-3 PennState
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Dimensionality Reduction: The Goal

e Goal:
» Solution to the Approximate Problem
e Should be “close to” the solution of the “Full Problem”

>Wh|ch result do you want to approximate?
 The optimal total cost?
* The Stage 1 investment plan?

* The risk of not meeting a constraint?

‘-3 PennState
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Long-Term Scenario Selection

* Create very large scenario set, and down-select

» Repeated sampling subsets from full set
 Forward selection: Add scenarios until some objective is met
« Backward selection: Remove scenarios until some objective is met

* Clustering-based reduction methods
 Cluster based on similar inputs (e.g., similar load/wind/solar patterns)

* Probability distance methods
 Select a subset that approximates the same outcome (e.g., expected cost)

e Decision covariance methods
» Cluster scenarios to maximize variance across candidate decisions

* Importance Sampling
* Ensure sufficient samples to represent the “tail”

!‘o,’ PennState
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Short-Term Uncertainty (Operational Hours)

* Within any planning year, need operations cost for candidate plans
« Within-year variability in load, wind, solar, forced outages, etc.
 Using 8760 hours may be prohibitive
* How to select a subset of hours, and how to weight them?

* Traditional approach: select representative hours (LDC)
» Because of expected increase in renewable generation, energy storage
 Requires chronological sequences of hours

* Select some number of segments (days, weeks) of chronological hours
of operating conditions, with an associated weight

"‘o,’ PennState
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Short-Term Uncertainty: Methods

Assume the goal is to select representative days (24 hours) or weeks (168)

1. Random Sampling
 Select a subset of days or weeks

2. Clustering
 Solve all days for one or more plans (get operation cost)
 Cluster/select subset of days to approximate the operation cost
* Various clustering methods: similar to those used for long-term scenarios

3. Chronological Time Period Clustering
« Solve all days for one or more plans (to obtain operation cost)
* Merge consecutive time periods that are “similar”
« Same idea as Network Reduction methods for OPF.

» Should long-term and short-term clustering be independent?

"‘o,’ PennState
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Summary

 Planning under uncertainty encompasses many questions
 Each analysis requires a different scenario set

* Critical assumptions to think about:
 The timing of information and decisions
 The relevant constraints and their representation
» The appropriate degree of risk aversion and its representation

« Scenario reduction methods (long-term)
« Select the subset that approximates your objective in the analysis

 Representative hours selection (short-term)
 Best selection varies across long-term scenarios

"‘o,’ PennState
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Extra: Example of Cost Risk
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ERCOT Example: Stage 1 Build

e Scenarios / Monte Carlo:

 Plan is optimal only in that
scenario

* Does not consider risk

e Stochastic Solution
* Considered all scenarios

 Lowest average cost across
scenarios

e There 1s still a distribution of
costs over the scenarios

* How do the plans differ in terms
of the entire risk distribution?
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Risk-Averse Objective Function

* What If you care more about the higher cost scenarios?

* Traditionally, focus on the Value-at-Risk (VaR)
 This iIs just the 1 — a percentile out of the cumulative distribution
* E.g., minimize the 90t percentile cost

* Contingent Value-at-Risk
« Expected value for all scenarios above the target percentile
 E.g., minimize average losses greater than X



ERCOT Example: CVaR in Objective Function

Expected Total Cost

* Tested several different target levels:

* 60% |
Increasing

« 70% Degrees of
e 80% Risk-Aversion

* 90%

(4] Olo 0‘0 0 |° 0‘ °
Q2 N 19 LN N
o0 S P
e

Risk-Averse Solutions Have Higher Average Costs
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ERCOT Example: Impact of Risk Aversion on Investments

Stage 1 Investments

T
[ ]sOLAR
| | wiND
[ [elele

20

New Capacity Stage 1 (MW)

CVaR 60% CVaR70% CVaR80% CVaR 90%

Greater Risk-Aversion: Additional Investments for “worst” scenarios
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ERCOT Example: Impact of CVaR on Distribution of Costs

90% Solution:
Lowest Cost in
High-Cost Scenarios

Cumulative Probability

—_

o
©

o
e

o
3

o
o

o
)

N
N
T

o
w

CVaR 60% | |

CVaR 70%
CVaR 80%

CVaR 90% | |

/

20 22 24 26 28 30 32
Stage 2 Total Cost by Scenario ($B)

1
34

36

Cumulative Probability

0. . . . | | |
0.89 -
0.88 i
0.87 i
0.86 -
085F -
0.84 -
0.83 .
9
02| cvar 70% |
081 ¢ ovar 0%
0.8 | ' ' ' ' '
24.5 25 25.5 26 26.5 27 27.5 28

Stage 2 Total Cost by Scenario ($B)



39

ERCOT Example: Impact of CVaR on Distribution of Costs

Cumulative Probability

—_

o
©

o
e

e
\l

o
o

o
)

o
N
T

v

CVaR 60% | |

CVaR 70%
CVaR 80%

CVaR 90% | |

Il 1
18 20 22

24 26 28 30 32
Stage 2 Total Cost by Scenario ($B)

1
34

36

08 T I | T |
CVaR 60%
0.78 1 CVaR 70% i
CVaR 80%

0.76 | CVaR 90% ]
2074+ .
Fa 90% Case:
So72t Highest Cost in
09_ Most Scenarios
o 07F }
2 /
©
S 0.68 i
S
>
O 0.66 .

0.64 - =

0.62 - / 7

0.6 | | | | |
22.5 / 23 23.5 24 24.5 25 25.5
60,/70% Cases: Stage 2 Total Cost by Scenario ($B)

Perform Better in all
except highest-cost
scenarios



40

Extra: Long-Term Scenario Clustering Methods
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Clustering for Long-Term Scenario Reduction

* Too many scenarios to include all
* Find the subset of scenarios that approximate the “true” solution

 \WWant to include
» At least one scenario that needs a different solution
* Do not include multiple scenarios that need the same solution

« Example:
* Assume the 50 scenarios is the “full set” of uncertainty
« Assume you can only include 4 scenarios in the stochastic model

"‘o,, PennState



1) Clustering on Input Uncertainties
* Apply K-means clustering to the full
sample set I c o
« Group into 4 clusters ¢ .
* Identify the “medoid” scenario

o ¢

o
oo
T
o

©
\‘

 Minimizes the distance within each

Emissions Limit (Relative to Reference
o
(o]

Cluster by Input Uncertainty

¢

¢
¢

¢
Cluster 3

¢

group from medoid "m "
05 m u
« Maximizes the distance between W L
2 Cluster 1
medoids across groups t - ., ¢
s ) Alf 5 els 7 sls sla 1|o 1|1 1|2

* “Weight” of each medoid: how many
scenarios in its cluster
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Price of Natural Gas ($/MMBTU)
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2) Clustering on Outcomes o,

Cluster by Cost/Emissions Outcomes

¢
¢
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g - N
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 Can consider multiple outcomes [ I . .
* e.9., Cost and emissions Eoal ° O0 .
. ] Cluster 2 ° ¢
* Clusters by relative impact on cost L. t e
» The reduced set will provide a better Y coofNawralGas GMMETU)
approximation of total cost fromthe full ~ =« ~..
uncertainty set N T NOTE:

Different partitions
the methods
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3) Clustering on Decisions

* Problem: Some high-cost scenarios
might not be addressed by the
decisions

 Distance-weighted approximates the
cost only in the reference case

» Selected scenarios might not
distinguish between investments

* Decision-based clustering

» Identify groups that favor a different
Investment plan

* Include one scenario from each group

NOTE: Does not partition the
Input space into distinct regions
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Clustering Methods: Impact on Cost, Risk, and Decisions

Stage 1 Investments Distribution of Cost
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Tradeoffs in Choosing a Clustering Method

e Computation time tradeoffs:

* Cluster by Inputs:
 No additional model runs needed for setup

e Cluster by Cost:
* Need solution from deterministic model for all scenarios, base system

e Cluster by Decision:
* Need solution from deterministic model for all scenarios, sample plans

* Given enough scenarios (clusters), any method works well
* More clusters = more computation time for stochastic model

"‘o,’ PennState
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