# Progress and Outlook for Advanced Nuclear

**Andrew Sowder, Sr. Technical Executive** Future Fleet Directorate

**EPRI Annual Seminar on Resource Planning for Electric Power Systems** November 10, 2022

 Image: Second system
 Image: Second system

 Image: Second



## What is an Advanced Reactor?

### GEN I & II

Early demonstrations through GW-scale commercial fleets

- Diversity of designs
- Diversity of vendors
- Diversity within vendors
- Limited standardization
- Aggressive build rates
- Evolving regulations

### GEN III/III+

Evolutionary designs, GWe-scale +

- Convergence on ALWRs
- Passive safety
- Standardization
- Integration with licensing
- Emergence of SMRs

#### Global commercialization, export, deployment

#### **Microreactors**

MWe-scale options

- Heat-pipe cooling
- Remote deployment
- New markets
- Competition with diesel

### **Advanced Reactors**

Beyond large LWRs: non-LWRs, lwSMRs

- Aggressive cost and schedule targets
- Competitiveness via new missions and customers
- Evolving regulatory frameworks

#### Development, demonstration, first units

Images in Public Domain, courtesy of DOE, AEC, and NASA.

© 2022 Electric Power Research Institute, Inc. All rights reserved.

## Advanced Reactor Options on the Menu



deployment options and wide power range Highly resource efficient with near-ambient pressure of operation Wide diversity of coolant and fuel options for various missions

Test scale experience in Japan for advanced hydrogen production Rapidly deployable, opportunity for industrial heat production

EPRI

### Advanced reactors create flexibility for size, coolant, fuel, products, and more.

## **Three Fundamental Choices for Nuclear Reactor Design**



- Moderator or no moderator (speed/energy of neutrons)
- Fuel and fuel form (fuel cycle)
- Heat transfer fluid (coolant)

## **The Nuclear Family Tree**

#### **Common Nuclear Families**

- Gas-cooled Fast Reactor (GFR)
- Lead-cooled Fast Reactor (LFR)
- Sodium Fast Reactor (SFR)
- Supercritical-water-cooled Reactor (SCWR)
- Molten Salt Reactor (MSR)
- High-temperature Gas-cooled Reactor (HTGR)



### Coolant properties drive many key design attributes and limitations.

# **Historical Interlude**

## Advanced (fission) reactors are not necessarily new...







Peach Bottom 1 – High temperature gas-cooled reactor (HTGR)

Fermi 1 – Sodiumcooled fast reactor (SFR) MSRE – Experimental liquid-fueled molten salt reactor (MSR)

Most AR design concepts were demonstrated at some scale in 1950s-60s.



## The first nuclear reactors were gas-cooled (air)...



### **Chicago Pile 1**

- first reactor to sustain criticality December 1942
- constructed in squash court under University of Chicago Stagg Field football stadium

### Oak Ridge X-10 Pile

- became second critical reactor November 1943 and the first designed for continuous operation
- constructed near Clinton Tennessee
   in rural Bethel Valley (now ORNL)



## First nuclear electricity was from a sodium fast reactor...



#### Experimental Breeder Reactor I (EBR-I)

- constructed south of Arco, Idaho
- demonstrated first nuclear electricity generation in December 1953 by powering four light bulbs
- later powered entire facility



## Small Modular Reactors <u>were</u> the original nuclear plants...



#### 1954: USS Nautilus (SSN-571)

1962: 1.75 MWe PM-3A NPP McMurdo Station, Antarctica

### Commercial LWR technology originated in naval propulsion programs



## HTGRs have six decades of operating experience...



Source: CEA, 2006. The recent past and near future of gas-cooled reactors: HTRs.

## SFRs also have six decades of operating experience...

| Reactor          | Country    | Full Power to<br>Shutdown | Power<br>(MW <sub>th</sub> ) | Power<br>(MW <sub>e</sub> ) | Design | Fuel              | Load<br>Factor        |
|------------------|------------|---------------------------|------------------------------|-----------------------------|--------|-------------------|-----------------------|
| DFR <sup>a</sup> | UK         | 1962 - 1977               | 60                           | 15                          | loop   | metal to oxide    | 21 – 52% <sup>b</sup> |
| Fermi-1          | US         | 1970 -1972                | 200                          | 61                          | loop   | metal:<br>U-10%Mo | nd                    |
| EBR-II           | US         | 1965 - 1994               | 62                           | 20                          | pool   | metal:<br>U-Zr    | nd                    |
| Rapsodie         | France     | 1967 - 1983               | 24/40                        |                             | loop   | oxide             | na                    |
| BOR-60           | Russia     | 1970 -                    | 55                           | 12                          | loop   | oxide             | nd                    |
| BN-350           | Kazakhstan | 1973 - 1999               | 750                          | 130                         | loop   | oxide             | 19 – 72% <sup>b</sup> |
| Phénix           | France     | 1973 - 2010               | 563                          | 255                         | pool   | oxide             | 41%                   |
| PFR              | UK         | 1974 - 1994               | 650                          | 250                         | pool   | oxide             | 27%                   |
| KNK-2            | Germany    | 1979 - 1991               | 58                           | 20                          | pool   | oxide             | 17%                   |
| JOYO             | Japan      | 1979 -                    | 140                          |                             | loop   | oxide             | na                    |
| FFTF             | US         | 1980 - 1992               | 400                          |                             | loop   | oxide             | na                    |
| <b>BN-600</b>    | Russia     | 1980 -                    | 1470                         | 600                         | pool   | oxide             | 74%                   |
| Super-Phénix     | France     | 1984 - 1998               | 2990                         | 1242                        | pool   | oxide             | 8%                    |
| FBTR             | India      | 1985 -                    | 40                           |                             | loop   | carbide           | na                    |
| MONJU            | Japan      | 1988 -                    | 714                          | 280                         | loop   | oxide             | nd                    |
| CEFR             | China      | 2010 -                    | 65                           | 23                          | pool   | oxide             | nd                    |
| PFBR             | India      | construction              | 1253                         | 500                         | pool   | oxide             |                       |
| BN-800           | Russia     | 2015 -                    | 2100                         | 870                         | pool   | oxide             | nd                    |

<sup>a</sup>DFR coolant was NaK; all others employ(ed) Na metal.

<sup>b</sup>Ranges provided for reactors with insufficient IAEA PRIS data for calculation of cumulative average load factors.



Source: IAEA PRIS Database; Waltar et al., 2012

# **Options, Opportunities, and Value**

## The nuclear bundle...four key attributes in one package!



## Expanded options bring compelling benefits.

### Higher temperatures

- access to new markets with new products
- higher efficiency electricity production
- reduced penalty for dry cooling
- Lower pressures
  - lower material and component costs
  - lower consequences of upsets
- Inherent safety and small physical, environmental footprint
  - favorable siting for near industrial endusers and population centers

### Nuclear beyond baseload electricity!



## More Options from Greater Flexibility

EPRI (2017) Report No. 3002010479

| Attribute                  | Sub-Attribute                                                  | Benefits                                                                                        |  |  |  |  |
|----------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| Operational<br>Flexibility | Maneuverability                                                | Load following                                                                                  |  |  |  |  |
|                            | Compatibility with Hybrid Energy<br>Systems and Polygeneration | Economic operation with increasing penetration of intermittent generation, alternative missions |  |  |  |  |
|                            | Diversified Fuel Use                                           | Economics and security of fuel supply                                                           |  |  |  |  |
|                            | Island Operation                                               | System resiliency, remote power, micro-grid, emergency power applications                       |  |  |  |  |
| Deployment<br>Flexibility  | Scalability                                                    | Ability to deploy at scale needed                                                               |  |  |  |  |
|                            | Siting                                                         | Ability to deploy where needed                                                                  |  |  |  |  |
|                            | Constructability                                               | Ability to deploy on schedule and on budget                                                     |  |  |  |  |
| Product<br>Flexibility     | Electricity                                                    | Reliable, dispatchable power supply                                                             |  |  |  |  |
|                            | Process Heat                                                   | Reliable, dispatchable process heat supply                                                      |  |  |  |  |
|                            | Radioisotopes                                                  | Unique or high demand isotopes supply                                                           |  |  |  |  |

### Cost, Policy, and Revenue All Drive Nuclear Competitiveness

Exploring the Role of Advanced Nuclear in Future Energy Markets. March 2018, Report 3002011803



- Non-electricity revenues and policy can drive deployment as much as cost
- Additional revenue streams provide greater investment certainty than other support
- ...but competitiveness of nuclear will also be impacted by competing technologies



## Advanced nuclear...no longer *if* but <u>when</u> and <u>by whom.</u>

#### Canada

- Canadian government SMR Roadmap
- OPG targeting operation of BWRX-300 lwSMR at Darlington by 2030
- Global First Power targeting demonstration of USNC MMR at Chalk River by 2027
- Focus on microreactors for remote applications

#### **United States**

- Continuing USG support via loan guarantee
   program
- UAMPs Carbon Free Power Project for NuScale VOYGR-6 deployment at INL
- Multibillion USD DOE commitment via ARDP and ARC awards for AR development and demonstrations
- Substantial private sector investment (billions USD)
- NuScale IwSMR design certification
- Multiple utilities partnering on AR projects
- TVA interest in fleet deployment of lwSMRs

#### United Kingdom

- Advanced Modular Reactor program funding > \$58M USD for SMR research
- Rolls-Royce led consortium developing UK SMR for multi-plant deployment into 2030s

#### **Middle East**

 Growing interest in SMRs (ARs) for power and non-electric missions (e.g., desalination)

Argentina

 Construction of domestic CAREM IwSMR design continues

#### Russia

- Active large LWR export business
- Operating grid-connected 800 MWe SFR (using MOX)
- Active pursuit of export for SFR
- Operational floating SMR plant
- Continued development of large GWe-scale SFRs

#### China

- Aggressive domestic and export GEN III ALWR build program
- Operating gird-connected HTGR (HTR-PM)
- HTR-PM6 under development for export
- Developing IwSMRs for land and barge
- Developing, constructing other non-LWRs incl. MSRs, SFRs

#### India

- Domestic SFR design under construction (delayed)
- Strategic goal of thoriumbased closed fuel cycle

#### LEGEND

- SMR: small modular reactor
  SFR sodium-cooled fast reactor
  HTGR high-temperature gas-cooled reactor
- ARDP advanced reactor demonstrations program

18



#### Japan

- Revisiting nuclear energy policy
- Renewed interest in SMRs (ARs) for domestic market
- Focus on hydrogen production

#### South Korea

- Revisiting nuclear energy policy
- Active interest in SMRs (ARs) for domestic and export market

### Together...Shaping the Future of Energy®