EPRI/IEA Workshop: Renewables and Clean Energy for Industries US National Perspective and Enabling Policies

Energy Efficiency & Renewable Energy

Steve Capanna
Director of Strategic Priorities & Impact Analysis
11/30/2016

Outline

- Recent US Government Developments
- Short term drivers of renewable energy
- The challenge of clean energy deployment in the industrial sector

Recent US Government Developments

First ever Federal Government report laying out how to achieve economy-wide 80% emissions reductions

- The MCS is not a political strategy or a new target – it's a technical document illustrating pathways to achieve 80% economy-wide emission reductions
- Consistent both with the 2025 target in the U.S. NDC and the global ambition needed to meet the long-term Paris
 Agreement aim to limit increases in global average temperatures to well below
 2°C above pre-industrial levels

Energy related emissions come from many different sources

MCS lays out multiple pathways to achieve deep decarbonization

FIGURE E1: U.S. NET GHG EMISSIONS UNDER THREE MCS SCENARIOS

Multiple pathways to 80 percent GHG reductions by 2050 are achievable through large reductions in energy CO_2 emissions, smaller reductions in non- CO_2 emissions, and delivering negative emissions from land and CO_2 removal technologies. Note: "No CO_2 removal technologies like BECCS.

Achieving these goals will require dramatic increases in the deployment of clean energy

FIGURE E2: AVERAGE ANNUAL CAPACITY ADDITIONS BY FUEL, HISTORICAL AND MCS BENCHMARK SCENARIO

Note: 2016 data are AEO 2016 reference case projections (EIA 2016a; MCS analysis).

Short-Term Drivers of Renewable Energy

The multi-year extension of the PTC and ITC for RE in December 2015 changed the short-term RE deployment trajectory

Source: Mai et al, NREL, 2016

Low natural gas prices and RE tax extensions can lead to medium-term power sector emissions below CPP requirements

RE tax credit extensions help drive even lower emissions and with longer lasting avoided emissions Source: Mai et al, NREL, 2016

Continued deployment of clean energy is also enabled by enormous cost reductions over recent years

Notes: Land based wind costs are derived from levelized cost of energy from representative wind sites. Distributed PV cost is average residential installed cost. Utility-Scale PV cost is the median installed cost. Modeled battery costs are at high-volume production of battery systems, derived from DOE/UIS Advanced Battery Consortium PHEV Battery development projects. LED bulb costs are cost per lumen for A-type bulbs. See full report for full citations and details.

Source: Revolution...Now, DOE, 2016 Update

...As well as by increasing demand for voluntary renewable energy purchases

- Voluntary REC market grew ~10% from 2014-2015, and represented 25% of non-hydro renewables in 2015
- Other renewables those built for purely economic reasons, represented 11% of nonhydro RE in 2015

Sources: EIA (2016), Barbose (2016), O'Shaughnessy et al. (2016), as cited in Heeter, "Status and Trends in the Voluntary Market" (2016)

State Policy has also been essential to increased RE deployment

Renewable Portfolio Standard Policies

Renewable Energy

DSIRE

NC CLEAN ENERGY

There is substantial remaining growth in existing RPS demand

Projected RPS Demand for RE Excluding hydro, MSW, and non-RE

Notes: Projected RPS demand is estimated based on current targets, accounting for exempt load, likely use of credit multipliers, offsets, and other state-specific provisions. Likely contributions by hydro, municipal solid waste (MSW), and non-RE technologies are deducted from the totals for consistency across states. Underlying retail electricity sales forecasts are based on regional growth rates from the most-recent EIA Annual Energy Outlook reference case.

Source: Barbose, "U.S. Renewables Portfolio Standards, 2016 Annual Status Report," 2016

- Under current state targets, total U.S. RPS demand will increase from 215 TWh in 2015 to 431 TWh in 2030 (though RE-portion in figure is slightly lower: 393 TWh in 2030)
- California represents roughly 40% of that growth; most of the remainder associated with relatively large states

More aggressive RPS targets could drive significant growth in RE deployment

- **No RPS**: no further growth in RPS requirements beyond 2015 and limited economic growth in RE
- Existing RPS: RPS requirements continue to grow based on existing state RPS policies as of July 2016
- **High RE:** nearly all states adopt an RPS with relatively aggressive targets.

Source: **Preliminary Report**, LBNL & NREL, *A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards*, 2016 (forthcoming)

The challenge of clean energy deployment in the industrial sector

Deep energy transformation must include industry

White House Mid-century Strategy for Deep Decarbonization, 2016

Diversity of industrial energy use makes this sector especially challenging

Pulp & Paper: Current and R&D Energy Savings Bandwidths

Forthcoming project: Potential for Widespread Electrification to Reduce Unwanted Pollution (POWER-UP) Study — www.nrel.gov/analysis/power-up.html

Goal: Detailed system-wide exploration of the potential and impact of widespread electrification

Clean Electricity to

- 1. What **end-use services** are the best candidates for **electrification** and how might adoption barriers be overcome?
- 2. How might mass electrification impact national and regional **electricity consumption and consumption patterns**?
- 3. How would the U.S. **electricity system transform** to meet the growing consumption needs from mass electrification and, at the same time, decarbonize?
- 4. How would a decarbonized grid operate to serve an electrified economy and what role might **demand-side flexibility** play to support reliable operations?
- 5. What impacts would this pathway have for GHG emissions, consumer costs, and other environmental, public health, and social implications?

 ENERGY

 Energy Efficiency & Renewable Energy

But many industrial resources are hard to electrify

The largest source of industry GHGs is associated with fossil fuel combustion for process heating

Alternative heat supplies could include:

- Geothermal
- Solar industry process heat
- Small nuclear reactors
- Biomass
- Hydrogen

Data source: U.S. DOE. 2015. "Manufacturing Energy and Carbon Footprints (2010 MECS)"

Conceptual H₂ at Scale Energy System

RE Grid plus battery storage

*Illustrative example, not comprehensive

Thank You!

Steve Capanna

Steve.Capanna@ee.doe.gov

202-586-7367

