

Long-Term Decarbonization Scenarios

Geoffrey J. Blanford, Ph.D.

Technical Executive

Energy & Environmental Analysis, EPRI

EPRI-IEA Workshop: Clean Energy for IndustriesNovember 29, 2016, Washington, DC

Overview

- "Paris and Beyond" scenarios
- Global pathway for non-electric emissions reductions
- Detailed look at decarbonization in US
- Role of electrification

"Paris and Beyond" scenarios in EPRI's MERGE analysis

From "The Paris Agreement and Next Steps in Limiting Global Warming", Rose et al (2016), Climatic Change, under review

Global Emissions in Ambitious Post-Paris Scenario

Global Non-Electric Emissions: 20-40% below BAU by 2050

- Ambitious scenarios have 100%+ reduction in electric sector emissions by 2050
- Meanwhile, non-electric emissions are reduced by 20%, or 40% if negative emissions are not allowed
- Reductions are achieved through:
 - Efficiency improvements (beyond baseline)
 - Electrification (beyond baseline)
 - Other low- or zero-carbon end-use fuel (e.g. bioenergy, hydrogen)
 - CCS in some cases
- Modeling is challenging due to heterogeneity of applications

Where's the carbon in the US economy?

US Direct CO₂ emissions + Fossil Fuel Consumption

US Direct CO₂ emissions + All Fuel Consumption

Reducing carbon emissions through electrification

- In nearly every case, replacing fossil fuels with electricity at the end-use results in lower overall carbon emissions
 - Leverage will only increase with tighter constraints on power sector CO2
- Key questions:
 - What are the costs?
 - How much fossil use can be cost-effectively replaced by electricity even without a carbon price?
 - For the remainder, how does carbon pricing change the equation, i.e. how does electrification compare with other mitigation options?
 - In either case, how do we think about adoption and diffusion in the context of consumer behavior?

Light-Duty Vehicles

- Currently EVs and PHEVs have a very small market share but may be on the cusp of much more widespread deployment
 - Certain consumer groups may find EV/PHEVs more or less attractive based on usage patterns and technology attitudes (from ORNL):
 - Urban / Suburban / Rural
 - Low / Medium / High annual mileage
 - Early Adopter / Early Majority / Late Majority
- We model the economic trade-offs among alternative vehicles in each region / consumer group based on these "behavioral cost" differences and retail fuel prices

Electric Vehicle Cost Delta vs Conventional Vehicle

- EPRI assumptions about vehicle costs for 2030 (no incentives) Median consumer type - ORNL estimates of behavioral costs \$1,000 - current fuel prices + \$100/tCO₂ \$500 Annualized Cost Delta vs ICEV \$0 -\$500 -\$1,000 -\$1,500 PHEV-20 PHEV-10 PHEV-40 EV-100 EV-150 EV-250 Purchase Price Behavioral Maintenance Fuel Carbon Net Delta vs ICEV

Electric vehicles may not work for all consumer types

Electric Heating in Buildings

- Currently about 1/4 of residential floorspace in the US has electricity as the main heat source, according to EIA surveys
 - Concentrated in regions with mild climates / favorable relative fuel prices, e.g. Florida and Pacific NW
 - Higher shares in mobile homes and multi-unit buildings
 - Lower share in commercial buildings
- New opportunities for air source heat pump (ASHP) technology
- We model the economic trade-offs for ASHP vs. conventional furnace (+ A/C) in each region / climate zone based on temperature profile and retail fuel prices

Distribution across US of Electric Heating Cost Premium

Higher carbon prices → more electric heating in the money

Hourly Building Heating/Cooling Load with ASHP vs Temp

Florida

Hourly Building Heating/Cooling Load with ASHP vs Temp

NE-Central (e.g. Chicago)

Non-Electric Energy CO₂ Emissions in US

Half of non-electric emissions are in sectors with clear potential for deep electrification, subject to consumer behavior

Industry and heavy transport: also potential for electrification, but fewer opportunities / more barriers

Key Takeaways

- Energy system decarbonization begins with electric sector
- Non-electric decarbonization rates can depend on negative emissions opportunities in electric sector and elsewhere
- Modeling non-electric emissions is challenging due to heterogeneity and consumer behavior considerations
- Pricing carbon emissions can have small effects relative to other economic factors
- Electrification is a promising decarbonization option, especially in light-duty vehicles and buildings – integrated analysis is needed

Together...Shaping the Future of Electricity

