## **Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study**



Steven Rose, Delavane Diaz, Geoffrey Blanford Energy & Environmental Analysis Research Group

> Webcast July 25, 2017



### **New Journal Article**

### Understanding the Social Cost of **Carbon: A Model Diagnostic and Inter-Comparison Study**

(Climate Change Economics Vol. 8, No. 2, 2017)

Be sure to download current version. Publisher formatting problem corrected.

Climate Change Economics, Vol. 8, No. 2 (2017) 1750009 (28 pages) © The Author(s) DOI: 10.1142/S2010007817500099

### UNDERSTANDING THE SOCIAL COST OF CARBON: A MODEL DIAGNOSTIC AND INTER-COMPARISON STUDY\*

STEVEN K. ROSE<sup>†</sup>, DELAVANE B. DIAZ and GEOFFREY J. BLANFORD

Energy and Environmental Analysis Research Group Electric Power Research Institute (EPRI) Palo Alto, CA 94304, USA srose@epri.com

> Accepted 12 May 2017 Published 9 June 2017

The social cost of carbon (SCC) is a monetary estimate of global climate change damages to society from an additional unit of carbon dioxide (CO2) emissions. SCCs are used to estimate the benefits of CO2 reductions from policies. However, little is known about the modeling underlying the values or the implied societal risks, making SCC estimates difficult to interpret and assess. This study performs the first in-depth examination of SCC modeling using controlled diagnostic experiments that yield detailed intermediate results, allow for direct comparison of individual components of the models, and facilitate evaluation of the individual model SCCs. Specifically, we analyze DICE, FUND, and PAGE and the multimodel approach used by the US Government. Through our component assessments, we trace SCC differences back to intermediate variables and specific features. We find significant variation in component-level behavior between models driven by model-specific structural and implementation elements, some resulting in artificial differences in results. These elements combine to produce model-specific tendencies in climate and damage responses that contribute to differences observed in SCC outcomes - producing PAGE SCC distributions with longer and fatter right tails and higher averages, followed by DICE with more compact distributions and lower averages, and FUND with distributions that include net benefits and the lowest averages. Overall, our analyses reveal fundamental model behavior relevant to many disciplines of climate research, and identify issues with the models, as well as the overall multimodel approach, that need further consideration. With the growing prominence of SCCs in decision-making, ranging from the local-level to international, improved transparency and technical understanding is essential for informed decisions.

Keywords: Social cost of carbon; social cost of greenhouse gases; climate change; carbon cycle; impacts; damages.







### **Motivation**

\$42 of damages to the world from a ton of CO<sub>2</sub>

The US Government's most recent "central" social cost of carbon (SCC) estimate of the future global damages to society from a metric ton of  $CO_2$  emissions in 2020

Used as an estimate of the benefit of reducing a ton of  $CO_2$  in 2020

What does \$42 mean?

Difficult to interpret and assess – little is known about the modeling underlying the values or the implied societal risks.



## Why is the Social Cost of Carbon (SCC) Important?

- It is an estimate of damages to society
- US Government (USG) legally obligated to value  $CO_2$  (9<sup>th</sup> Circuit Court, 2007)
  - SCC modeling (of some kind) an option
- USG generated SCC values to estimate benefits of CO<sub>2</sub> reductions for federal rules
- SCCs increasingly being considered and used – rulemakings, states, other countries, other applications

| Application type                                                                                                                                                                        | Examples                                                      | Global emissions implications | SCCs used                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-----------------------------|--|
| Federal regulatoryDOT (NHTSA) vehicle<br>efficiency standards, EPA<br>Clean Power Plan, DOE<br>small motor efficiency<br>standard, DOE microwave<br>efficiency standard (1, 2, 3,<br>4) |                                                               | Incremental                   | USG                         |  |
| Federal non-regulatory                                                                                                                                                                  | CEQ NEPA reviews, BLM<br>coal mine permitting (5, 6)          | Incremental                   | USG                         |  |
| State                                                                                                                                                                                   | Minnesota, Maine (7, 8)                                       | Incremental                   | USG considered              |  |
| Local (e.g., city)                                                                                                                                                                      | Austin, TX (9)                                                | Incremental                   | Custom                      |  |
| Value of technology                                                                                                                                                                     | Technology SCC pricing (10)                                   | Incremental                   | USG and other               |  |
| Non-U.S. regulatory                                                                                                                                                                     | Canada, United Kingdom<br>(U.K.) (11, 12)                     | Incremental                   | Canada – USG<br>UK – Custom |  |
| Federal climate goal<br>evaluation                                                                                                                                                      | U.S. proposed legislative<br>GHG cap and trade policy<br>(12) | Non-incremental               | USG                         |  |
| Global climate goal evaluation                                                                                                                                                          | Tol(2009) (13)                                                | Non-incremental               | Custom                      |  |



### Rose and Bistline (2016)



## **This Study**

First direct comparison of SCC modeling and detailed assessment of the inner-workings

- Information essential to understanding, evaluating, improving the state-of-the-art and estimates
- Information essential to potential SCC users
- A requisite first step before other issues can be broached (e.g., omitted impact categories and biases, equity weighting, intergenerational discounting)

### Is designed to establish a new common analytical ground for moving forward

- Improving understanding, informing use, informing estimation, and identifying research priorities
- Providing the community of policy-makers, stakeholders, and scientists greater technical clarity on SCC modeling and global climate damage estimation
- While we analyze particular versions of SCC models (USG), our perspectives and insights apply to other modeling, other applications (e.g., SC-CH<sub>4</sub>), and aggregate climate risks and goals
  - The go to models and values the starting point and raw material for current and future valuation of \_\_\_\_ greenhouse gases
- This study represents an enhancement and refinement of the earlier EPRI report that was a key input to the recent National Academy of Sciences SCC study on updating estimation

## **Social Cost of Carbon Modeling Mechanics**

**Definition:** The net present value of future global climate change impacts from <u>one</u> additional net global metric ton of carbon dioxide emitted to the atmosphere at a particular point in time



SCC in 2020 is the discounted value of the additional net damages from the marginal emissions increase in 2020



## **USG SCC Modeling Approach**

| Feature                                 | Detail                                                                                                                                                                                           | USG Solution                       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Multiple SCC models                     | Three models — DICE, FUND, PAGE                                                                                                                                                                  | 5                                  |
| Standardized uncertainties              | <ul> <li>Five reference socioeconomic and emissions scenarios (each extended from 2100 to 2300)</li> <li>One distribution for the climate sensitivity parameter</li> </ul>                       | o C<br>r<br>C                      |
| Model specific parametric uncertainties | In FUND and PAGE climate and damage components                                                                                                                                                   | S                                  |
| Standardized discounting                | three constant discount rates $-2.5\%$ , 3%, and 5%                                                                                                                                              | o \$                               |
| Thousands of SCC results                | 150,000 SCC estimates for a given discount rate and year (3 models $\times$ 5 socioeconomic scenarios $\times$ 10,000 runs each)                                                                 | S                                  |
| Aggregation of results                  | <ul> <li>Average of 150,000 results for each discount rate and year</li> <li>"3% (95th percentile)" value is 95th percentile from distribution of 150,000 results with 3% discounting</li> </ul> | Makin<br>the estiment<br>into thes |

### CCs the result of nt aggregation

Over models, time, world egions, impact ategories, and many cenarios

42 derived from 150,000 CC estimates

g sense of, & assessing, nates requires delving se details



### **USG SCC Values**

| Year | 5%      | 3%      | 2.5%    | High Impact                  |  |
|------|---------|---------|---------|------------------------------|--|
| rear | Average | Average | Average | (95 <sup>th</sup> Pct at 3%) |  |
| 2010 | 10      | 31      | 50      | 86                           |  |
| 2015 | 11      | 36      | 56      | 105                          |  |
| 2020 | 12      | 42      | 62      | 123                          |  |
| 2025 | 14      | 46      | 68      | 138                          |  |
| 2030 | 16      | 50      | 73      | 152                          |  |
| 2035 | 18      | 55      | 78      | 168                          |  |
| 2040 | 21      | 60      | 84      | 183                          |  |
| 2045 | 23      | 64      | 89      | 197                          |  |
| 2050 | 26      | 69      | 95      | 212                          |  |

Table ES-1: Social Cost of CO<sub>2</sub>, 2010 – 2050 (in 2007 dollars per metric ton of CO<sub>2</sub>)

USG (2015, 2016)



### Figure ES-1: Frequency Distribution of SC-CO<sub>2</sub> Estimates for 2020<sup>3</sup>

| 5.0% |
|------|
| 3.0% |
| 2.5% |

### USG (2016)



### The Role of Individual Models in USG SCC Estimates

Histogram of the 150,000 SCC estimates behind the USG SCCs for 2020 with a 3% discount rate



Source: Rose et al (2017). Developed from USG data available at https://www.whitehouse.gov/omb/oira/social-cost-of-carbon.



3300-



### **Assessment SCC Modeling Component-by-Component & Overall**



- Examining the <u>inner workings</u> of the modeling
- <u>4 separate technical assessments</u> elucidating & assessing individual modeling components & overall USG experimental design
- Learning about the raw intermediate modeling and behavior undiscounted & disaggregated





### Sample of Component Assessment Results and Insights...

# Informing interpretation & assessment by elucidating model behavior, differences, causes

# isights...



### **Socioeconomics & Emissions Component Assessment**







## **Socioeconomics & Emissions Component Assessment**

- Explore the following questions:
  - What sort of socioeconomic and emissions **uncertainty** is currently represented in the USG exercise?
  - Is there **additional uncertainty** to consider?
  - Are results **sensitive** to alternative assumptions?
- Evaluate inputs and model structure, and other component analyses informs last question

### **Socioeconomic & Emissions Inputs**

Income (Gross Domestic Product)

Population

Fossil and industrial CO<sub>2</sub> emissions

Land CO<sub>2</sub> emissions

Kyoto non-CO<sub>2</sub> emissions or forcing

Other non-CO<sub>2</sub> emissions or forcing





## Global CO<sub>2</sub>, Income, and Population Uncertainty

**Projections for USG SCC futures and literature ranges** 



Note – some scenarios only to 2050.

Broader and additional uncertainty to consider beyond that in the USG exercise (variables modeled & relationships). And, need method for assigning probabilities.





### **Socioeconomics & Emissions Input Implementation**

| Characteristic                         | DICE                                                                            | FUND                                                                                                                          |                   |
|----------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Socioeconomics and emissions           |                                                                                 |                                                                                                                               |                   |
| GDP                                    | Global levels                                                                   | Regional per capita income growth                                                                                             | Regio             |
| Population                             | Global levels                                                                   | Regional population growth                                                                                                    | Regio             |
| F&I CO <sub>2</sub>                    | Global emissions                                                                | Derived regional emissions based on<br>regional per capita income and<br>population growth and FUND<br>emissions coefficients | Regio             |
| Land CO <sub>2</sub>                   | Global emissions                                                                | Derived regional emissions based on<br>regional per capita income and<br>population growth and FUND<br>emissions coefficients | Regio             |
| Kyoto non-CO <sub>2</sub>              | CH <sub>4</sub> , N <sub>2</sub> O, and fluorinated gas<br>forcing <sup>a</sup> | CH <sub>4</sub> , N <sub>2</sub> O, and SF <sub>6</sub> emissions                                                             | CH <sub>4</sub> , |
| Other non-CO <sub>2</sub> <sup>b</sup> | Aerosols and residual forcing                                                   | Global SO <sub>2</sub> emissions                                                                                              | Regio<br>for      |

Differences in climate forcing agents modeled, and how inputs enter models. Artificial differences.



### PAGE

onal growth rates onal growth rates nal emissions

onal emissions

N<sub>2</sub>O, and fluorinated gas forcing<sup>a</sup>

onal SO<sub>2</sub> emissions and other rcing



### **Climate Modeling Component Assessment**





## **Climate Modeling Component Assessment**

- Explore the following questions:
  - How do the **climate models** underlying SCC calculations behave, and are they similar?
  - What do the **incremental climate responses** look like from each model, and are they similar?
  - How do the USG SCC model responses compare to more detailed climate models?
- Evaluate model structure, code each model's component, and run diagnostics with standardized emissions & radiative forcing inputs

| <b>Modeling S</b> | tructural (         |
|-------------------|---------------------|
| Atmospheri        | c concent           |
|                   | CO <sub>2</sub>     |
|                   | Non-CO <sub>2</sub> |
|                   | Non-CO <sub>2</sub> |
| Radiative fo      | orcing              |
|                   | CO <sub>2</sub>     |
|                   | Non-CO <sub>2</sub> |
|                   | Non-CO <sub>2</sub> |
| Global mea        | n tempera           |
| Ocean temp        | peratures           |
| Climate fee       | dback               |
| Implementa        | ation of CC         |
| Parametric        | uncertaint          |
| Time steps        |                     |

Structural differences across DICE, FUND, & PAGE in all characteristics

### **Characteristics** rations

Kyoto non-Kyoto

Kyoto non-Kyoto ature

 $D_2$  pulse





### **Global Temperature Responses to 2100**

(with equilibrium climate sensitivity 3°C)



Meaningful differences in outcomes and sensitivity for the same inputs. Trace to modeling & implementation features (e.g., carbon cycle, non- $CO_2$ , forcing translation, pulse implementation).

## Incremental global temperature change





## Sensitivity of Temperature Response to Climate Sensitivity





PAGE most sensitive, FUND least sensitive. PAGE not adjusting rate of temperature response.



### **Comparing Incremental Temperature Responses to Literature** (USG models vs. MAGICC with RCP emissions inputs and equilibrium climate sensitivity 3°C)



A more complex model (MAGICC) suggests a different climate response



### **Climate Damages Modeling Component Assessment**



© 2017 Electric Power Research Institute, Inc. All rights reserved.





## **Climate Damages Modeling Component Assessment**

- Explore the following questions:
  - What are the **detailed constituents of** damages underlying SCC calculations?
  - How <u>sensitive</u> are the damage estimates to alternative assumptions and formulations?
  - How do damage estimates <u>respond</u> **incrementally** to a marginal change in emissions?
- Evaluate model structure, code each model's component, and run diagnostics with standardized climate & socioeconomic inputs

### Modeling Structural C

Global mean sea-level **Regional temperature** Regions Damage categories Damage drivers Damage specifications Adaptation Climate benefits Catastrophe Parametric uncertainty Other features

Structural differences across DICE, FUND, & PAGE in all characteristics



| haracteristics |
|----------------|
| rise           |
| S              |
|                |
|                |
|                |
| 5              |
|                |
|                |
|                |
| у              |
|                |





### Damage Specifications Literature Basis

All formulations based on older climate impacts literature, with some formulations based on those from the other models

| Model (version)            | Damage category                                | Study                                                                                                                                       | Basis                                                 | Links to SCC models |
|----------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|
| DICE (2010) <sup>a</sup>   | Aggregate non-SLR<br>SLR coastal<br>impacts    | IPCC (2007), Tol (2009) <sup>b</sup><br>Undocumented                                                                                        | Calibration                                           | DICE, FUND, PAGE    |
| FUND (v3.8)                | Agriculture                                    | Kane et al. (1992), Reilly et al. (1994), Morita et al. (1994), Fischer<br>et al. (1996), Tsigas et al. (1996)                              | Calibration                                           |                     |
|                            | Forestry                                       | Tol (2002b)<br>Perez-Garcia <i>et al.</i> (1995), Sohngen <i>et al.</i> (2001)<br>Tol (2002b)                                               | Income elasticity<br>Calibration<br>Income elasticity |                     |
|                            | Energy                                         | Downing et al. (1995, 1996)<br>Hodgson and Miller (1995)                                                                                    | Calibration<br>Income elasticity                      |                     |
|                            | Water resources                                | Downing et al. (1995, 1996)<br>Downing et al. (1995, 1996)                                                                                  | Calibration<br>Income elasticity                      |                     |
| Coasta<br>Diarrhe          | Coastal impacts                                | Hoozemans et al. (1993), Bijlsma et al. (1995), Leatherman and<br>Nicholls (1995), Nicholls and Leatherman (1995), Brander et al.<br>(2006) | Calibration                                           |                     |
|                            | Diarrhea                                       | WHO Global Burden of Disease (2000) <sup>c</sup><br>WHO Global Burden of Disease (2000)                                                     | Calibration<br>Income elasticity                      |                     |
|                            | Vector-borne<br>diseases                       | Martin and Lefebvre (1995), Martens et al. (1995, 1997), Morita<br>et al. (1994)                                                            | Calibration                                           |                     |
| FUND (v3.8)<br>PAGE (2009) | Cardiovascular and<br>respiratory<br>mortality | Link and Tol (2004)<br>Martens (1998)                                                                                                       | Income elasticity<br>Calibration                      |                     |
|                            | Storms                                         | CRED EM-DAT database, <sup>d</sup> WMO (2006)<br>Toya and Skidmore (2007)                                                                   | Calibration<br>Income elasticity                      |                     |
|                            | Ecosystems                                     | Pearce and Moran, (1994), Tol (2002a)                                                                                                       | Calibration                                           |                     |
| PAGE (2009)                | SLR                                            | Anthoff et al. (2006) <sup>e</sup>                                                                                                          | Calibration and in-<br>come elasticity                | FUND                |
|                            | Economic                                       | Warren et al. (2006)f                                                                                                                       | Calibration                                           | DICE, FUND, PAGE    |
|                            | Noneconomic                                    | Warren et al. (2006)                                                                                                                        | Calibration                                           | DICE, FUND, PAGE    |
|                            | Discontinuity                                  | Lenton et al. (2008), Nichols et al. (2008), Anthoff et al. (2006),<br>Nordhaus (1994) <sup>g</sup>                                         | Calibration                                           | DICE, FUND          |
|                            | Adaptation costs                               | Parry et al. (2009)                                                                                                                         | Calibration                                           |                     |

1

## **Global Damage Responses to 2100**



Significant differences in damage outcomes and sensitivity for the same society & global climate. Trace to modeling features (e.g., sea-level rise, regional temperatures, functional forms and drivers, specific categories, adaptation).





### **Implied Damage-Driver Relationships from Sensitivity Analyses**



PAGE damages systematically more sensitive to key drivers. FUND systematically less sensitive.





### **Implied Category & Region Damages with Warming**



Damages driven by model-specific features (e.g., DICE quadratics; FUND benefits, cooling, China; PAGE noneconomic, discontinuity, regional scaling)



## **Key Factors of Annual Incremental Damages to 2300**



Model specific features dominate incremental damages



### **Model-Specific Uncertainty in Climate and Damages**







## **Model-Specific Uncertainty in Climate and Damages**

- We also assess climate and damage component probabilistic specifications and behavior
- We code probabilistic versions of both components, and independently run each with standardized inputs and random draws over model-specific component parameters
  - 2500 draws, parameters independently drawn, Latin Hypercube sampling
- Also run MAGICC probabilistically for comparison
  - With model-specific and ECS uncertainties

| Model | Uncertain climate<br>parameters | Uncertain damage<br>parameters | Distribution spec        |
|-------|---------------------------------|--------------------------------|--------------------------|
| DICE  | 0                               | 0                              | N/A                      |
| FUND  | 11                              | 442 (384 region specific)      | Normal, truncated normal |
| PAGE  | 10                              | 35                             | Triangula                |



cifications

triangular, gamma ٦r



### **Probabilistic Incremental Climate and Damage Responses**

Different uncertainty considered across models contributing to SCC distribution outcomes

Incremental temperatures to 2300\*



<sup>\*</sup> With high emissions reference, climate sensitivity 3°C <sup>#</sup> With high temperature reference, USG2 socioeconomics







### **Comparing Probabilistic Temperature Responses to Literature** (model-specific and ECS uncertainties modeled)





## **Summary of Component Assessment SCC Insights**

- Independent component assessments isolate and elucidate differences in model structure, intermediate behavior, and tendencies that help interpret SCC results
- FUND produces more compact SCC distributions & lowest averages
  - Lowest incremental temperature and damage responses
  - More muted sensitivity to uncertainties (emissions, ECS, temp, income)
- DICE produces larger right tails & higher average SCCs
  - Higher and earlier incremental temperature and damage responses
  - Most sensitivity to emissions, more sensitive than FUND to other uncertainties
  - Lack of parametric uncertainty contributes to more compact distributions

### PAGE produces longest right tails & highest average SCCs

- Higher and earlier incremental responses, incremental damages highest over long run
- Most sensitive to many uncertainties (ECS, temp, income) —
- Parametric uncertainty specification further contributing to higher values

### We also identify model-specific elements that underlie differences. Some differences artificial. All differences need justification.





## **Evaluation of USG Experimental Design**

- Our component assessments...
  - Accommodate evaluation of individual model SCCs in terms of concrete underlying elements
  - And, provide intimate understanding and comparable model details that allow us to reflect on the overall experimental design and identify opportunities for improvement
- The USG experimental design is defined by a set of methodological choices



## **USG Experimental Design Features and Choices**

| Experimental design feature                       | USG choices                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Model                                             | <ul> <li>Use multiple models</li> <li>Use DICE, FUND, and PAGE</li> <li>Modify models from native formulations</li> </ul>                                                                                                                                                                                                                                                                                              | <ul> <li>The USG experime</li> <li>Nothing like it in</li> </ul> |
| Projected socioeconomics and<br>emissions/forcing | <ul> <li>Use partially standardized exogenous alternative socioeconomic and emissions/forcing projection inputs</li> <li>Use five projection sets based on Clarke <i>et al.</i> (2009)</li> <li>Extrapolate each projection variable from 2100 to 2300</li> </ul>                                                                                                                                                      | <ul> <li>There are alternati</li> </ul>                          |
| ECS parameter                                     | <ul> <li>Use a standardized ECS parameter value distribution and choose a random sampling procedure</li> </ul>                                                                                                                                                                                                                                                                                                         | affect results                                                   |
| Other input parameters                            | • Use model specific uncertainty distributions, make assumptions about correlations, and choose a random sampling procedure for various other FUND and PAGE climate and damage component parameters                                                                                                                                                                                                                    | <ul> <li>Clear communicati<br/>important for peer</li> </ul>     |
| Discounting                                       | <ul> <li>Use constant discounting</li> <li>Use three alternative discount rates</li> <li>Use 2.5%, 3%, and 5%</li> </ul>                                                                                                                                                                                                                                                                                               |                                                                  |
| Model runs and results                            | For each official USG SCC                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |
|                                                   | <ul> <li>Run each model 50,000 times (with 10,000 random parameter draws for each socioeconomic/emissions projection)</li> <li>Aggregate results across models into overall distributions by discount rate with equal weighting of models and socioeconomic/emissions projections</li> <li>Select specific values from the overall distributions (averages for each discount rate, and one 95th percentile)</li> </ul> |                                                                  |

## ental design is novel the literature

### ives and the choices

### ion and justification <sup>-</sup> and public evaluation



## **Summary of Experimental Design Assessment**

- Conceptual motivation behind many choices pragmatic (e.g., incorporating uncertainty, discounting projections)
- Clear issues & opportunities for improvement to provide greater confidence in estimates
  - **Transparency and justification** for individual models, differences, experimental design
  - **Structural uncertainty** representation some differences artifical and not scientific uncertainty
  - **Input and parametric uncertainty** representation alternative representations, additional \_\_\_\_ uncertainties, and constraints on what is reasonable
  - **Comparability and independence** of results in question, but needed for pooling results \_\_\_\_
  - **Robustness** of results (insensitivity to alternative assumptions) not likely currently. Could be more so.
  - Multi-model approach reconsideration would be practical. Creates challenges (transparency, justification, comparability, and independence).
    - One idea: develop a model component-by-component full experimental control, statistically comparable results, greater transparency regarding modeling and uncertainty, utilization of expertise



### **Illustration of Experiment Design Alternatives and Implications**

e.g., Alternative model and scenario weighting

SCCs based <u>only</u> on alternative weighting of 2020 3% discount rate USG values

|                                              | USG SCCs          |                      |                      | Withou              | t 5th soc            | cioeco | nomic/en            | nissions results     | 5                    |
|----------------------------------------------|-------------------|----------------------|----------------------|---------------------|----------------------|--------|---------------------|----------------------|----------------------|
|                                              |                   | All                  | DICE                 | FUND                | PAGE                 | DICE   | E/FUND              | DICE/PAGE            | FUND/P               |
| Average<br>5th percentile<br>95th percentile | \$42<br><br>\$123 | \$44<br>\$3<br>\$130 | \$39<br>\$16<br>\$76 | \$21<br>\$3<br>\$59 | \$71<br>\$5<br>\$297 | S      | \$30<br>\$1<br>\$71 | \$55<br>\$7<br>\$183 | \$46<br>\$1<br>\$183 |



### AGE



## **Concluding Remarks**

- Our study objective is to improve understanding of SCC estimation
  - To facilitate informed dialogue, assessment, decision making, and scientific advances
- Essential to understand and assess the state-of-the-art
  - Anyone wanting/needing to value greenhouse gas emissions

### This study offers perspectives on models & differences not previously available

- First detailed SCC model diagnostic and inter-comparison comparable insights into modeling structures, implementation, and intermediate results
- We trace significant differences in SCC distributions to component-level behavior, implementation, specific features, and model tendencies
- Important to communicate, evaluate, and justify differences and address those with insufficient scientific rationale, improve representation of uncertainty and resulting robustness, and enhance documentation for components and models
- We observe fundamental scientific issues with current modeling (components to multi-model) approach), and opportunities for immediate and longer-term improvement, including peer review
- Clear immediate (< 1 year) opportunities to revise for greater confidence in results</p>
  - e.g., prioritizing models and scenarios, revising inputs, and/or adjusting modeling





## Thank you for joining us today!

### **Upcoming EPRI SCC Webcasts**

- August 16, 2-3 pm EDT
  - Social Cost of Carbon Pricing of Power Sector CO<sub>2</sub> Emissions: Accounting for Emissions Leakage and Other Social Implications from Subnational Policies
- TBD
  - Applying the Social Cost of Carbon: Technical Considerations

For further information: srose@epri.com





## **CO<sub>2</sub> Concentration Responses**



Meaningful differences in outcomes and sensitivity for the same inputs. Trace to modeling & implementation features (e.g., carbon accumulation, feedback).



