

EPRI Social Cost of Carbon Webcast Series

Today: Social Cost of Carbon Pricing of Power Sector CO₂

August 16, 2017

ELECTRIC POWER RESEARCH INSTITUTE

EPRI Webcast Series

- July 25, 2017 (1:30-3 pm EDT)
 - Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study
- August 16, 2017 (2-3 pm EDT)
 - Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies
- September 5, 2017 (2-3 pm EDT)
 - Applying the Social Cost of Carbon: Technical Considerations

Publications and slides available at http://eea.epri.com ("Research" tab). For information: Steven Rose, srose@epri.com.

Social Cost of Carbon Pricing of Power Sector CO₂

Accounting for Leakage and Other Social Implications from Subnational Policies

John Bistline and Steven Rose

EPRI Energy and Environmental Analysis Group

Webcast August 16, 2017

ELECTRIC POWER RESEARCH INSTITUTE

Motivations

- Social Cost of Carbon (SCC) is an important metric
 - An estimate of damages to society from CO₂
 - An estimate of the benefits of avoiding CO₂
- SCCs are increasingly being considered and used
 - Federal, state, local, and other decisions-makers
- However, SCC application issues can affect estimated climate and net benefits (Rose and Bistline, 2016)
 - Issues beyond SCC *estimation* (see previous webcast)
- One application issue: net global CO₂ emissions changes are not considered
 - An SCC is the estimated value of a net incremental change in $\underline{\textbf{GLOBAL}}$ CO_2
 - Regulations do not typically estimate CO₂ changes beyond the regulated segment (i.e., leakage)
 - x% positive leakage = x% lower CO₂ reduction benefits

Examples of Types of SCC Applications

Application type	Examples	Global emissions implications	SCCs used
Federal regulatory	DOT (NHTSA) vehicle efficiency standards, EPA Clean Power Plan, DOE small motor efficiency standard, DOE microwave efficiency standard (1, 2, 3, 4)	Incremental	USG
Federal non-regulatory	CEQ NEPA reviews, BLM coalmine permitting (5, 6)	Incremental	USG
State	Minnesota, Maine (7, 8)	Incremental	USG considered
Local (e.g., city)	Austin, TX (9)	Incremental	Custom
Value of technology	Technology SCC pricing (10)	Incremental	USG and other
Non-U.S. regulatory	Canada, United Kingdom (U.K.) (11, 12)	Incremental	Canada–USG UK–Custom
Federal climate goal evaluation	U.S. proposed legislative GHG cap and trade policy (12)	Non-incremental	USG
Global climate goal evaluation	To1(2009) (13)	Non-incremental	Custom

Rose and Bistline (2016)

Motivations (continued)

- Leakage acknowledged in Minnesota Public Utilities
 Commission CO₂ externalities pricing proceedings
 - Judge recommended investigating how to measure and consider leakage
- This analysis explores the potential for U.S. power sector CO₂ leakage, and other social implications, with subnational policies
 - Increased subnational action (region, state, local) with federal climate policy uncertainty
 - Important to evaluate environmental/economic impacts
 - Limited literature, with limitations in the modeling
- Discussion paper forthcoming (refinement of analysis in Rose and Bistline, 2016) with a peer-reviewed paper in review

Bistline and Rose (forthcoming), Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies

EPRI Discussion Paper

Rose and Bistline (2016), Applying the Social Cost of Carbon: Technical Considerations

EPRI Report #3002004659

Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies

John E. Bistline^{*} and Steven K. Rose

Electric Power Research Institute, Palo Alto, CA 94304

Abstract

In environments where climate policy has partial coverage or unequal participation, carbon dioxide (CQ) emissions or accomica tacitity may alth to locations and sectors where emissions are unregulated. This is referred to as leakage. Leakage can offset or augment emissions reductions associated with a policy, which has important environmental and economic implications. Although leakage has been studied at national levels, analysis of leakage for submational policies is limited, despite greater market integration and many existing state and regional environmental regulations in the U.S. This study explores leakage potential, net emissions changes, and other social implications. Although leakage has been studied at national levels, many of power stector CQ, emissions. We undertake an economic analysis using EPK U.S.H.EdR model, where power sector CQ, emissions are priced in individual U.S. regions with a range of social cost of carbon ISCC) values. SCC estimates are being considered by policitable the power sector (U, e., in the rest of the energy system) and estimate other potential societal effects, such as to electricity prices, power sector investments, and overall consumption. Our results indicate that CQ leakage is possible within and outside the electric sector that would affect. CQ, reduction benefits, ranging from negative 20% to over 80% in our scenarios, with primarily positive leakage, but could also result (in lower overall emissions reductions, as well as larger price indicates, takage, but could also result in lower overall emissions reductions, and were allo dowered within and accos regions. Constraining power imports into the SCC pricing region likely reduces leakage, but could also result in lower overall emissions reductions, as well as larger price intraces. Leakage, but could also result in lower overall emissions reductions, as well as larger price intraces. Leakage, but could also result in lower overall emissions reductions, as well as larger price intraces. Leakage, but could also result

Keywords: Climate policy; social cost of carbon; emissions leakage; state-based regulations; regulatory impact analysis; energy-economic modeling

Modeling of SCC Pricing of Power Sector CO₂

Primary questions of interest:

- 1. Is there CO_2 emissions leakage?
- 2. What are the net CO_2 implications?
- 3. Are there other social implications?

Exploration into potential for CO₂ leakage and economic implications

relevance (e.g., CPP)

Outputs of interest:

- CO₂ emissions changes power sector, economy-wide
- Electricity price changes
- Power system responses generation, capacity, trade
- Energy use responses electric vs. non-electric
- Macro indicators (e.g., GDP, consumption, surplus)

Finding insights with broad

Primary Insights from the SCC Pricing Analysis

CO₂ leakage potential

- CO₂ leakage is possible within and outside the electric sector that would affect CO₂ reduction benefits
- Benefits calculations that ignore leakage would be incorrect too high if there is positive leakage, and too low if there is negative leakage

Price effects and policy costs

- Electricity price changes are possible within and across regions that would affect consumers
- Electric sector and macroeconomic costs are also possible within a region and nationally

Potential leakage management: constraining power imports into the SCC pricing region (or pricing) CO_2 imports) likely reduces leakage, but also results in larger price increases and lower net CO_2 reductions

Effects vary: by region, time, policy stringency, policy design (e.g., leakage mitigation provisions), policy environment in neighboring regions, and price responsiveness of demand

Overall insights: CO_2 leakage is possible when there are differences in regional power sector CO_2 policy stringency; additional environmental and economic metrics are important to consider

Modeling Framework and Scenarios

U.S. Regional Economy, GHG, and Energy (US-REGEN)

US-REGEN: EPRI's In-House Electric Sector and Economy Model

U.S. Regional Economy, GHG, and Energy

Capacity Expansion Economic Model, Long Horizon to 2050

Customizable State/Regional **Resolution for Policy and Regulatory Analysis**

Innovative Algorithm to Capture Wind, Solar, and Load Correlations in a Long-Horizon Model

RESEARCH INSTITUTE

Modeling of SCC Pricing of Power Sector CO₂

- Main scenarios: Apply SCC to power-sector-only CO₂ emissions in individual U.S. regions
 - Apply various SCC price paths to just one region
 - Sensitivity scenario constraining additional power imports
- Other scenarios
 - National SCC
 - No new transmission
 - Inelastic demand

Region	SCC Trajectory	Import Constraint
Region X	None	No
Region X	SCCL (lower)	No
Region X	SCCM (middle)	No
Region X	SCCH (higher)	No
Region X	SCCL (lower)	Yes
Region X	SCCM (middle)	Yes
Region X	SCCH (higher)	Yes

Import Constraint = in SCC region, prohibit increases in electricity imports above reference levels

SCC Pricing Assumptions

Middle (M)

SCC prices source: Anthoff et al. (2011)

ELECTRIC POWER RESEARCH INSTITUTE

Detailed Regional Results

NW-Central Region

US-REGEN Default Regions

Applying SCCs to the NW-Central region

Economy-Wide CO₂ Changes

Model results indicate leakage, i.e., CO₂ changes outside NW-Central Power

- Other US Non-Electric
- In-Region Non-Electric

Economy-Wide CO₂ Changes

Constraining power imports reduces leakage, AND net emissions reductions

- Other US Non-Electric
- In-Region Non-Electric

NW-Central Electricity Price Changes

Find price increases – larger with higher SCC and imports constrained

dashed = with import constraints

٦

Electricity Price Changes Beyond NW-Central

ELECTRIC POWER RESEARCH INSTITUTE

Macroeconomic Implications

Net present value consumption loss through 2050 with NW-Central SCC pricing policies for the NW-Central region (left) and the entire U.S. (right)

Find broader economic implications (in region and outside) – power production costs, macroeconomic costs

Cross-Region Results

US-REGEN Regional Map

Leakage and Electricity Price Changes

SCCL SCCM SCCH

Observations

- \bullet
- lacksquare
- ${}^{\bullet}$ not always

 CO_2 leakage occurring and varies by region, with positive leakage (i.e., higher emissions) in most regions and SCC trajectories

Electricity prices increase as well with regional variation

Leakage and price changes typically increase in the SCC, but

Import Constraints: Leakage and Electricity Prices (SCCH)

Import Constraints: Leakage and Net Reductions (SCCH)

Comparison of Regional and National SCC Pricing

Cumulative Additions in NW-Central to 2050

Summary of Additional Sensitivities

National power-sector SCC pricing

Cumulative fuel market leakage of 1–3%

Policies in neighboring regions can materially impact capacity planning decisions [left figure]

Higher leakage rates possible when new transmission is constrained and when electricity demand is less price responsive

Primary Insights from the SCC Pricing Analysis

CO₂ leakage potential

- CO₂ leakage is possible within and outside the electric sector that would affect CO₂ reduction benefits
- Benefits calculations that ignore leakage would be incorrect too high if there is positive leakage, and too low if there is negative leakage

Price effects and policy costs

- Electricity price changes are possible within and across regions that would affect consumers
- Electric sector and macroeconomic costs are also possible within a region and nationally

Potential leakage management: constraining power imports into the SCC pricing region (or pricing) CO_2 imports) likely reduces leakage, but also results in larger price increases and lower net CO_2 reductions

Effects vary: by region, time, policy stringency, policy design (e.g., leakage mitigation provisions), policy environment in neighboring regions, and price responsiveness of demand

Overall insights: CO_2 leakage is possible when there are differences in regional power sector CO_2 policy stringency; additional environmental and economic metrics are important to consider

Thank you for joining us today!

We hope you'll join us for our **September 5th SCC** Webcast

- July 25, 2017 (1:30-3 pm EDT)
 - Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study
- August 16, 2017 (2-3 pm EDT)
 - Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational **Policies**
- September 5, 2017 (2-3 pm EDT)
 - Applying the Social Cost of Carbon: Technical Considerations

Publications and slides available at <u>http://eea.epri.com</u> ("Research" tab). For information: Steven Rose, <u>srose@epri.com</u>.

Bibliography

- Bistline and Rose (submitted), "Social Cost of Carbon Pricing of Power Sector CO₂: Accounting for Leakage and Other Social Implications from Subnational Policies," EPRI Discussion Paper
- Rose and Bistline (2016), Applying the Social Cost of Carbon: Technical Considerations, EPRI Report 3002004659, http://epri.co/3002004659.
- Rose, et al. (2014), Understanding the Social Cost of Carbon: A Technical Assessment, EPRI Report 3002004657, http://epri.co/3002004657.
- Rose, et al. (2017), "Understanding the Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study," *Climate Change Economics* 8(2)
- EPRI (2017), US-REGEN Model Documentation, EPRI Report 3002010956
- Blanford, et al. (2016), Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection, EPRI Report 3002008653

For more information, see our website at http://eea.epri.com

Together...Shaping the Future of Electricity

John Bistline

Senior Technical Leader 650-855-8517 jbistline@epri.com

Explaining Region-Specific Leakage Variation

- Two primary factors determine leakage and reliance on imports under regional SCC pricing
 - Relative regional prices (at the load segment level) 1.
 - 2. Relative regional CO_2 emission intensities of electricity (CO_2/MWh)
 - In SCC region: higher CO_2 intensity \rightarrow higher electricity price
 - Outside SCC region: higher CO₂ intensity \rightarrow higher import CO₂ rate
- Other factors include own-price elasticities, transmission
- Factors vary by region and interact

US-REGEN Assumed Capital Cost Trajectories

NW-Central Cumulative CO₂ Leakage Rates

60%

Cumulative Net CO₂ Reductions with NW-Central SCC

Link between Leakage and Trade

size of bubble = in-region emissions reduction

Leakage and Policy Stringency across Regions

