

Key Insights from EPRI Report on Benefits, Existing Methods and Key Challenges of Aggregating GHG Emissions Offsets

Sheldon Zakreski + Peter Weisberg

EPRI Offset Workshop
March 15, 2012

The Climate Trust

- Mission: To provide expertise, financing, and inspiration to accelerate innovative climate solutions that endure
- Managed financing of over \$18M
- Ten diverse project sectors
- Projects in nine states and two countries
- Compliance program examples
 - OR, WA, MT, MA, CA
- Voluntary program examples
 - NW Natural Smart Energy
 - Colorado Carbon Fund

Outline

- Aggregation 101
- Why Aggregation?
- Case Studies
- Lessons Learned
- Conclusions

Research supported by EPRI but does not reflect the views of EPRI or its members.

Aggregation of Greenhouse Gas Emissions Offsets: Benefits, Existing Methods, and Key Challenges

What is Aggregation?

- Aggregation groups
 - geographically and/or temporally dispersed project activities
 - that reduce emissions in a similar way
 - to streamline the process of qualifying and quantifying those activities as offsets

Why is aggregation needed?

- 1. Increase offset supply
 - Offsets in agriculture and forestry are fragmented and distributed geographically
- 2. Reduce transaction costs
 - Design, Legal, Verification
- 3. Mitigate project risks
 - Multiple project = "portfolio" effect which reduces the risk of any single project failing

Markets Have Successfully Captured Large Offset Projects

Aggregation is the ONLY way for smaller offset projects to achieve large-scale emissions reductions

Aggregation Can Help Unlock the Offsets in Agriculture & Forestry

Activity	Average Net Impact (t/ha/yr)	Per 170 ha farm (t/yr)	Maximum Area (M ha)	Annual Potential (t CO ₂ e)
Conventional to No-Till	1.01	171.7	72	72,720,000
Reduced Fertilizer N Application Rates	0.45	76.5	106	47,700,000
Improved Grazing Management, Rangeland	1.22	207.4	166	202,520,000

Potential to reduce > 300 million mt CO₂e per year!

Aggregation Reduces Costs and Mitigates Projects Risk

- Reduce Transaction Costs
 - Enables scale over time
 - Simplify monitoring and verification
 - Facilitate financing at scale

- Reduce risks
 - Portfolio effect across project sites
 - Buyer risks reduced by streamlined contracts

Project Case Studies

- 1. Ducks Unlimited (DU) avoided grasslands conversion program in North Dakota
- 2. North Dakota Farmers Union's (NDFU) farmer aggregation under the CCX soil carbon protocol
- 3. Cool nrg CFL light bulb replacement program in Mexico under the CDM's Programme of Activities (PoA) guidelines
- 4. Sadia animal waste digesters aggregation program in Brazil under the CDM PoA process
- 5. AgCert's "bundling" of animal digester projects in Mexico and Brazil (2004-2008) under the CDM
- 6. Existing USDA Conservation Reserve Program (CRP)

Case Study: Ducks Unlimited

- Avoided grassland conversion
- Upfront payment to 100 landowners to enroll 50,000 acres in easement
- Methodology risk

Lesson Learned:

Aggregators can turn *practice-based* payments into *performance-based* credits

Case Study: North Dakota Farmers Union CCX Soil Carbon

- National Farmers
 Union
- 3,900 producers,
 5.5 million acres,
 10 million offsets

Photos from North Dakota Farmers Union Photo Galleries online at http://carboncredit.ndfu.org/4dlink/4dcgi/GetWebContent/Photo%20Gallery

Lessons Learned:

Standardized protocols with simple data and verification requirements scale quickly.

Simple, Standardized Protocols Facilitated Rapid Aggregation

Crediting rate

- Practice-based
- Regional

Simple, Standardized Protocols Facilitated Rapid Aggregation

Permanence

Demonstrated over the five year crediting period

Additionality

Projects after 2003 are considered additional

Monitoring and Verification

Site visit on 10% of projects

Clean Development Mechanism's Programme of Activities (PoA)

Case Study: Cool nrg Mexican CFL PoA

- PoA aims to distribute 30-45 million CFLs
- Individual CPAs will distribute 1 million CFLs in a specific region

Programme of Activities

Case Study: Cool nrg Mexican CLF PoA

- 1 CPA registered in Puebla, Mexico
- 1 million CFLs = 240,000 tCO₂e reductions over 10 years

Lesson learned: PoAs allow for

1. Temporal Flexibility

- PoA rule: 28 year crediting period
- Cool nrg can include new CPAs until 2037

2. Simplified Protocols at Scale

- PoA rule: CPAs below small-scale thresholds can use small-scale methodologies
- Cool nrg can use AMS IIC requires monitoring only 240 CFLs; AMS IIJ allows defaults

PoA Case Study: Sadia Brazilian Swine Digester

- Brazil's largest meat exporter
- 1,050 swine digesters, 1 million CERs/year
 - (25 swine digesters in US)

Lesson Learned: Successful aggregation reduces participants' financial risk

Brazilian Development Carbon Market Bank **Swine Producers**

Lessons Learned:

Aggregation can facilitate financing through

1. Reduced regulatory risk

 New digesters do not need approval of CDM to be included in the PoA

2. Scale

- Individual swine digester = \$25-50k
- Program Loan = \$38 million

Case Study Conclusion: Key Lessons

- 1. Aggregators can reduce or eliminate risks for participants in their programs
- 2. Simplified protocols enable large participation
- 3. Separate rules for programs provide flexibility and regulatory certainty

Next Steps: US Aggregation Program Standard

- US lacking rules, procedures and infrastructure to implement programs
- A systematic approach enables successful markets and scale of offset credits
- Needed to accelerate supply for US agriculture

Thank you!

The Climate Trust

pweisberg@climatetrust.org

szakreski@climatetrust.org

