MSU-EPRI Methodology

Quantifying N₂O Emissions Reductions in US Agricultural Crops
Through N Fertilizer Rate Reduction

Neville Millar

G. Philip Robertson

W.K. Kellogg Biological Station and Department of Crop and Soil Sciences, Michigan State University

November 4, 2011, Hotel Monaco, Washington, DC

Guiding Principles

Scientifically Robust

- Peer reviewed literature
- Genuine environmental benefits

Transparent

- Intuitive to all stakeholders
- Minimize gaming opportunities

Practical

- Low farmer effort and cost
- Fast adoption
- Broad uptake

Empirical Backing

Method 1 – All N fertilized crops in U.S.

Hundreds of field studies show that N_2O emissions are related to N fertilizer rate - IPCC Tier 1: Linear (EF = 1 %)

Method 2 – Corn in North Central Region

Empirical research in Michigan and elsewhere shows nonlinear relationship - IPCC Tier 2: Exponential

Eligibility Requirements

Credit based on N fertilizer rate reductions

Fertilizer Type and Management

- Synthetic and Organic N directly applied to soil
- Fertilizer applied at any time of year

Nitrous Oxide Emissions

- Direct (on site)
- Indirect (off-site and downstream)

Flexibility to achieve N rate reduction

- Economic optimization MRTN
- Timing split application
- Source slow release
- Cover crops

N rate reduction is result

Methodology Accounting

Direct N₂O emissions calculations – 2 Methods

Baseline Definition

N₂O emissions that would have been emitted during the project, based on the N rate that would have been used absent the project (BAU)

- Baseline scenario assumes that BAU is equivalent to N fertilizer rate based on past N fertilizer use
- Baseline N₂O emissions are estimated using one of two Approaches - both generate a baseline N fertilizer rate from which N₂O emissions are calculated

Baseline Selection

Approach 1

Baseline N rate calculated from:

Site-specific, farmer N fertilizer management records

Require at least five years prior to project period depending on rotation

Used preferentially due to finer spatial resolution

Approach 2

Baseline N rate calculated from:

- County-level yield records aggregated by the USDA NASS
- Yield goal equations for determining N fertilizer rate

Used if farmer records unavailable or unsuitable

Additionality Assessment

Additionality assessed using Performance Test

Regulatory Surplus

No applicable mandatory law or other regulation is in place to reduce
 N fertilizer rate below BAU rate

Performance Standard

Exceed a performance (BAU) threshold that is:

- Based on yield-goal approach
- Identical to calculated baseline N rate under Approach 1 or 2

Reductions in N fertilizer N rate (N₂O emissions), below BAU threshold result in project additionality

Dealing with Permanence and Reversal

N₂O emissions avoided are:

- Immediate
- Irreversible
- Permanent

No risk mitigation mechanism for offsets

Producer aggregation

Collective persistence of credits

Proving no Project Leakage

Farmers can reduce N rate without yield reduction

Yield Goal \rightarrow Economic Optimization approach

- Yield goal N rate recommendations from yield history
- Economic optimization Fertilizer : Grain price ratio

Calculators are available for optimizing N rates

No yield reductions -- No yield compensation

No additional N use → No extra N₂O emissions

No Project Leakage

Emissions Reductions and Uncertainty

Uncertainty is quantified and included in credit award calculation

N₂O emissions (kg N₂O-N ha⁻¹ yr⁻¹)

Uncertainty range at 95% confidence level of project emissions reductions	Uncertainty factor
< ± 15%	1.000#
$> \pm 15\% = \pm 30\%$	0.943
> ± 30% = ± 50%	0.893
> ± 50% = ± 100%	0.836

Fertilizer rate (kg N ha⁻¹ yr⁻¹)

Monitoring and Verification

Proof of Practice

- N fertilizer management
- Rotation history
- Site (field) coordinates

Proof of ownership

Title /management documents

		MATERIAL	RPMs
14	6A	44 - 0 - 0 ESN	
7	2A	Urea	984
60	3A	Potash	522
			405
-			

lb/ac	ac	%
0	< 0.01	0.00
290 - 296	0.66	1.66
296 - 301	0.95	2.37
301 - 307	2.05	5.13
307 - 313	1.69	4.22
313 - 319	0.02	0.04
319 - 325	0.50	1.26
325 - 331	5.24	13.13
331 - 336	18.63	46.65
336 - 342	10.20	25.54
Field Boun	dary	

#/TON	BIN#	PRODUCT
148	1A	11-52-00 MAP
700	2A	46-00-00 UREA
407	3A	00-00-62 WHITE
745	6A	POLY-COATED UREA
2000		

Validation Status

Verified Carbon Standard

- Public comments (completed)
- 1st Validation (completed)
- 2nd Validation (nearing completion)

American Carbon Registry

- Public comments (completed)
- Peer review (nearing completion)

MSU – EPRI Methodology

Scientifically Robust

Environmental Integrity

Transparent

Stakeholder understanding

Practical

Low farmer effort and cost