Methods to Quantify N₂O Emissions in Agricultural Crop Production

National Emission Factors (Tier 1), Regional Emission Factors (Tier 2), and Process-Based Models (Tier 3)

EPRI Greenhouse Gas Emissions Offsets Workshop November 4, 2011

Phil Robertson
W.K. Kellogg Biological Station and
Dept. of Crop and Soil Sciences
Michigan State University

robertson@kbs.msu.edu

Atmospheric Concentrations from 1000 C.E.

Atmospheric N₂O is Increasing at rates similar to the other 2 major biogenic gases

Atmospheric N₂O from 1976 325 320 AGAGE (NH) AGAGE (SH) NOAA/GMD (NH) NOAA/GMD (SH) 1980 1985 1990 1995 2000 2005

The contemporary increase is largely due to agricultural intensification

with a total annual impact ~ 1.2 Pg C_{equiv}
 (compare to fossil fuel CO₂ loading = 4.1 PgC per year)

- Industry is responsible for ~16% of anthropogenic source
 - Agriculture for the remainder
- with most of the agricultural increase (~60%) from cropped soils —

Measuring Nitrous Oxide Production in the Field

Static chamber method – simple but elegant

- Chamber covers soil surface
- Headspace samples removed over ~1 hour period
- 3. Vials removed to lab for gas (N_2O, CH_4, CO_2) analysis

4. N_2O flux = Rate of headspace N_2O accumulation

5. Eddy correlation not possible

Challenges of chamber technique

1. Limited spatial coverage

We can deploy only a limited number of chambers to capture heterogeneous fluxes

Source: P. Grace

Row – Interrow differences

2. Limited **temporal** coverage

 Day-to-day fluxes can change rapidly 10x difference in 1 day!

CO₂ flux

N₂O flux

Day of year

KBS, Michigan

Source: Ambus & Robertson 1998

 Diurnal differences can sometimes be important

Challenges of chamber technique, cont.

• Seasonality and environmental **events** are important

Source: Ruan and Robertson 2011

Challenges of chamber technique, cont.

 Event-based sampling and automated continuous chambers can solve many temporal issues

Challenges of chamber technique

Unique challenge for estimating global fluxes

 For any given local ecosystem, relatively low confidence in annual flux without a comprehensive sampling program

Source: Birdanier & Conant 2011

 Globally, constrained by known changes in atmospheric concentrations

Global Source	Tg N₂O-N		
Industry		1.3	
Agriculture			
Soils	4.2		
Animal Waste	2.1		
Biomass burning	<u>0.5</u>		
Total Agriculture		6.8	
Total Anthropic			8.1
Total Non-Anthropic			9.6
Total Global Flux			17.7

Source: Robertson 2994, IPCC 2007

Challenges of chamber technique

BUT, importantly, this is not to say that we can't quantify the effects of land use change or cropping practices.....

 Well-designed sampling programs can capture major events

 And differentiate among different land use and cropping practices

 Basis for using IPCC methodologies to evaluate N₂O reduction strategies

✓ We can quantify differences among systems and practices
with greater confidence than we can quantify annual fluxes

Based on recognition that soil nitrogen availability is best general predictor of N₂O flux

Natural (unmanaged) ecosystems

Fertilized crop ecosystems

Source: Matson & Vitousek 1987

Source: Breitenbach et al. 1980

Early compilations

■ Bouwman et al. 1996

■ Eichner (1990)

■ IPCC 2006

$$EF = 1.0\% (0.25 - 2.25\%)$$

Total Direct Soil N₂O Emissions

$$N_2O_{Direct} = (N_2O_{INPUTS} + N_2O_{ORGANIC} + N_2O_{PRP}) \times N_2O_{MW} \times N_2O_{GWP}$$

Where:

 N_2O_{INPUTS} = Direct soil N_2O emission from N inputs

 $N_2O_{ORGANIC}$ = Direct soil N_2O emission from the cultivation of organic soils (Histosols)

 N_2O_{PRP} = Direct soil N_2O emission from urine and dung deposited on soil by grazing animals

 N_2O_{MW} = Ratio of molecular weights of N_2O to N_2O-N (44/28)

 N_2O_{GWP} = Global warming potential for N_2O (298)

Direct Soil N₂O Emissions from N Inputs

$$N_2O_{INPUTS} = (F_{SN} + F_{ON} + F_{CR} + F_{SOM}) \times EF_{input}$$

Where:

 N_2O_{INPUTS} = Direct soil N_2O emission from N inputs

 F_{SN} = Nitrogen fertilizer – synthetic

F_{ON} = Nitrogen fertilizer – organic (e.g. manure, compost)

F_{CR} = Nitrogen in crop and cover crop residues (above and belowground)

F_{SOM} = Additional nitrogen mineralized from soil organic matter due to change in land use or tillage management

 EF_{input} = Emission factor or proportion of applied N fertilizer transformed to N_2O ;

IPCC Tier 1 $EF_{input} = 0.01 (1\%)$

IPCC Tier 2 EF_{input} is dependent on specific practice and regional conditions.

Indirect N₂O

Total Indirect Soil N2O Emissions

$$N_2O_{Indirect} = (N_2O_{Vol} + N_2O_{Leach}) \times N_2O_{MW} \times N_2O_{GWP}$$

Where:

 $N_2O_{Vol} = N_2O$ emitted by ecosystem receiving volatilized N:

$$N_2O_{Vol} = [(F_{SN} \times FR_{SN}) + (F_{ON} \times FR_{ON})] \times EF_{VOL}$$

where $F_{SN} = \text{synthetic N}$; $FR_{SN} = 0.1$; $F_{ON} = \text{organic N}$, $FR_{ON} = 0.20$, $EF_{VOL} = 0.01$

 $N_2O_{Leach} = N_2O$ emitted by ecosystem receiving leached and runoff N, when present:

$$N_2O_{Leach} = (F_{INPUT} \times FR_{LEACH}) \times EF_{LEACH}$$

where $FR_{LEACH} = 0.30$; $EF_{LEACH} = 0.0075$

Main limitation of Tier 1:

It's crude:

Know that Emission factors differ by system and cropping practice

$$EF = 1.0\% (0.25 - 2.5\%)$$

- Know that interactions can be complex
 e.g. tillage x soil texture
- Know that it's not necessarily linear:

Allows for alternative Emission Factors for direct N₂O emissions from managed soils:

- Nitrogen source (e.g. anhydrous ammonia vs. urea vs. manure)
- Crop type (e.g. corn vs. cotton vs. tomatoes vs. perennial biofuels)
- Management practice (e.g. till vs. no till vs. cover crops)
- Land use (e.g. cropland vs. fertilized pasture)
- Climate (e.g. humid vs. semi-arid)
- Soil (e.g. fine vs. coarse texture, well drained vs. poorly drained)
- "or **other** condition-specific emission factors that a country may be able to obtain" (IPCC 2006)

Process-based simulation modeling or direct measurements to estimate direct N₂O emissions

- Does not rely on Emission Factors
- Based on underlying knowledge of processes that produce N₂O in soil
- Major advantages
 - Integrate Tier 2 factors and their interactions in real-time
 - Ideally, generalizable to wide variety of soils, climates, & cropping systems

Simulating N₂O based on simulation of N-cycle

Source: Robertson & Groffman 2007

N₂O sources in soil

Nitrification

Which dominates?

Source: Robertson & Groffman 2007 Source: Ostrom et al. 2010

Source: Robertson & Groffman 2007

Process-based simulation modeling

Limitations

- Incomplete understanding of underlying processes (e.g. nitrification vs. denitrification)
- Limited ability to predict daily fluxes (limited data sets)
- Incomplete knowledge of sensitivity to different management practices in different regions and crops

Number of models available

- DAYCENT, DNDC, ecosys, EPIC, APSIM, NLOSS, Expert-N, WNMM, FASSET, CERES-NOE
- Different strengths, different abilities; no formal inter-comparisons yet conducted

Conclusions

- 1. Methods to quantify N₂O emissions in crop production are differentially robust.
- 2. Tier 1 provides a reasonable first-order estimate for inventories and for estimating the carbon equivalents to be gained by reducing fertilizer rates
 - Although available evidence suggests that it is over-conservative in many instances
- 3. Tier 2 provides the ability to correct for geography (soils, climate), cropping systems (different crops), and cropping practices (different management)
 - For most systems Tier 2 emission factors await compilation
- 4. Tier 3 provides substantial long-term promise for improving both inventories and reduction credits
 - But the poor availability of data prevents models from being tested in a systematic way across geographies and cropping practices