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Atmospheric Concentrations from 1000 C.E.
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Atmospheric N,O from 1976
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Measuring Nitrous Oxide Production in the Field

Static chamber method — simple but elegant
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1. Chamber covers soil
surface

2. Headspace samples
removed over ~1 hour
period

3. Vials removed to lab for
gas (N,O, CH,, CO,)
analysis

4. N,O flux = Rate of headspace N,0 accumulation
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Challenges of chamber technique

1. Limited spatial coverage

We can deploy only a limited number of chambers to capture heterogeneous fluxes
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Challenges of chamber technique

2. Limited temporal coverage
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Challenges of chamber technique, cont.

e Seasonality and environmental events are important
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Challenges of chamber technique, cont.

e Event-based sampling and
automated continuous chambers
can solve many temporal issues
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Challenges of chamber technique

Unique challenge for estimating global fluxes

e For any given local
ecosystem, relatively low
confidence in annual flux
without a comprehensive
sampling program

N2O emissions
(kg N2O-N hatyr?)

(4

O N} A\
<
-~ A7 a® a4 o

N ’ ) L N}
N < Q )
N [N: > -

Global Source Tg N,O-N

Source: Birdanier & Conant 2011 Industry 13

Agriculture

Soils
e Globally, constrained by known Animal Waste
changes in atmospheric e e

concentrations .
Total Agriculture 6.8

Total Anthropic
Total Non-Anthropic .6

Total Global Flux @
Source: Robertson 2994, IPCC 2007



Challenges of chamber technique

BUT, importantly, this is not to say that we can’t quantify the effects of
land use change or cropping practices.....
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Il. IPCC Methodologies — Tier 1

Based on recognition that soil nitrogen availability is best general
predictor of N,O flux

e Natural (unmanaged) ecosystems e Fertilized crop ecosystems
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N,O emissions (kg N ha1)

II. IPCC Methodologies — Tier 1, cont.

Early compilations

= Bouwman et al. 1996
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Il. IPCC Methodologies — Tier 1, cont.

ota| Direct Soil N,O Emissions
NZODirect w NZOORGANIC + NZOPRP) X NZOMW X NZOGWP

Where:
N,O,\purs = Direct soil N,O emission from N inputs
N,Oreanic = Direct soil N,O emission from the cultivation of organic soils

(Histosols)
N,O,rp = Direct soil N,O emission from urine and dung deposited on soil by grazing
animals
N,O,,, = Ratio of molecular weights of N,O to N,O-N (44/28)
N,O

swp = Global warming potential for N,O (298)



Il. IPCC Methodologies Tier 1, cont.

Direct Soil N,O Emissions from N Inputs

NZOINPUTS = (FSN + I:ON + I:CR + FSOM) X EI:input

Where:

N,O,\puts = Direct soil N,O emission from N inputs
F.y = Nitrogen fertilizer — synthetic
Fon = Nitrogen fertilizer — organic (e.g. manure, compost)

Fr = Nitrogen in crop and cover crop residues (above and belowground)

F.om = Additional nitrogen mineralized from soil organic matter due to change in
land use or tillage management
EF;.pue = EMission factor or proportion of applied N fertilizer transformed to N,O;
IPCC Tier 1 EF, .= 0.01 (1%)

IPCC Tier 2 EF; . IS dependent on specific practice and regional conditions.



II. IPCC Methodologies — Tier 1, cont.
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Il. IPCC Methodologies — Tier 1, cont.

NZOAgricultural Soils — N O NZolndirect

Direct

Total Indirect Soil N2O Emissions

NZOIndirect = (NZOVOI + NZOLeach) X NZOMW X NZOGWP
Where:
N,O,,, = N,O emitted by ecosystem receiving volatilized N:
N,Oyo = [(Fsy x FRgy) + (Fon X FRoy)] X EFyo
where F¢, = synthetic N; FR¢, = 0.1; F5, = organic N, FR,, = 0.20,
CEFyo, = 0.01
N,O, ..., = N,O emitted by ecosystem receiving leached and runoff N, when present:

N,0 cach = (Finpur X FRigacH) X EFeac
where FR gpcy = 0.308EF gocyy = 0.007



II. IPCC Methodologies — Tier 1, cont.

Main limitation of Tier 1:

It’s crude:
e Know that Emission factors differ by system and cropping practice

EF = 1.0% (0.25 — 2.5%)

 Know that interactions can be complex
e.g. tillage x soil texture

e Know that it’s not necessarily linear:

- Bouwman et al. 2002 Hoben et al. 2010
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Il. IPCC Methodologies — Tier 2

Allows for alternative Emission Factors for direct N,O emissions from
managed soils:

* Nitrogen source (e.g. anhydrous ammonia vs. urea vs. manure)

e Crop type (e.g. corn vs. cotton vs. tomatoes vs. perennial biofuels)

 Management practice (e.g. till vs. no till vs. cover crops)

e Land use (e.g. cropland vs. fertilized pasture)

e Climate (e.g. humid vs. semi-arid)

* Soil (e.g. fine vs. coarse texture, well drained vs. poorly drained)

e “or other condition-specific emission factors that a country may be able to
obtain” (IPCC 2006)



Ill. IPCC Methodologies — Tier 3

Process-based simulation modeling or direct measurements to estimate
direct N,O emissions

* Does not rely on Emission Factors

e Based on underlying knowledge of processes that produce N,0 in soil

e Major advantages
e Integrate Tier 2 factors and their interactions in real-time

* Ideally, generalizable to wide variety of soils, climates, & cropping
systems



lll. IPCC Methodologies — Tier 3

Simulating N,O based on simulation of N-cycle

iatiol
Plant - N <N2FX

Microbial N

Sediment-N

N NH,* NO3
Fertilizer-N  Wireation
Precipitation-N

Groundwater-N

Source: Robertson & Groffman 2007



lll. IPCC Methodologies — Tier 3

N,O sources in soil
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lll. IPCC Methodologies — Tier 3

Controls on Denitrification
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lll. IPCC Methodologies — Tier 3

Process-based simulation modeling

Limitations

e Incomplete understanding of underlying processes (e.g.
nitrification vs. denitrification)

e Limited ability to predict daily fluxes (limited data sets)
* Incomplete knowledge of sensitivity to different management
practices in different regions and crops
Number of models available

* DAYCENT, DNDC, ecosys, EPIC, APSIM, NLOSS, Expert-N, WNMM, FASSET,
CERES-NOE

e Different strengths, different abilities; no formal inter-comparisons yet
conducted



Conclusions

Methods to quantify N,O emissions in crop production are
differentially robust.

Tier 1 provides a reasonable first-order estimate for inventories and
for estimating the carbon equivalents to be gained by reducing
fertilizer rates

e Although available evidence suggests that it is over-conservative in
many instances

Tier 2 provides the ability to correct for geography (soils, climate),
cropping systems (different crops), and cropping practices (different
management)

e For most systems Tier 2 emission factors await compilation

Tier 3 provides substantial long-term promise for improving both
inventories and reduction credits

e But the poor availability of data prevents models from being tested
in a systematic way across geographies and cropping practices



