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Hydrogen Activities Today (a few examples)
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e 70 millionmt H, globally =~6 EJ
(based on LHV), c.f. ~140 EJ of NG

* Manydemonstration projects are
proposed or underway for
hydrogen as an energy carrier, but
most are “out of the money”
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Potential Roles of Hydrogen as an Energy Carrier

= Power-gas-Power for longer duration storage
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Many potential H, applications in a low-carbon energy system:
Uncertain where value will emerge

= Production of hydrogen: “green” vs. “blue”

— Electrolysis interactions with power system are complex

— Production from NG with CCS could be more cost effective with low GHGs

= Storage and distribution: significant challenges

- Underground storage is limited, above-ground storage is expensive

— Delivery infrastructure requires new pipelines, safety management |
- Conversion to ammonia or other molecule could make handling easier E

— Distributed electrolysis (“H, by wire”) is another option

» End-use demand: competition with other low-carbon fuels __ g

— Electricity where possible, bioenergy where a molecule is needed
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Key research questions for hydrogen: Modeling needed!

= How does electrolysis interact with the power system? <

= What is the most cost-effective delivery pathway?

« What are the limits of (direct) electrification? <=

= Low-carbon molecules: H, (or H,-derived) vs. Bioenergy?
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How does elecirolysis interact with the power system?

my h
L
= Insights from US-REGEN model analysis: W -

— Power-gas-power storage only plays an economic role under most stringent policy
constraints (e.g. zero carbon or 100% renewables)

-~ While power-to-gas for end-use is potentially synergistic with electric generation (i.e.
flexibility value), it competes with/drives up the cost of power-gas-power storage

- Power-to-gas (i.e. “green” hydrogen) will need to compete economically with other
low-GHG hydrogen pathways (e.g. “blue” hydrogen via SMR or ATR + CCUS)

= Technology development for electrolysis is a key uncertainty:
modeling can inform targets for future R&D
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Equilibrium price of elecirolytic hydrogen

Excluding Storage and Distribution
Average Cost of Electrolytic Hydrogen

= Cost structure of electrolytic $60

hydrogen depends on system mix:

capacity factor vs. electricity price $50

= Grid-integrated electrolysis could
take advantage of low-price hours
of high renewable generation —
but how many?
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ELECTRICITY INPUT AVERAGE COST S/MWH

$10

S-
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CAPACITY FACTOR FOR ELECTROLYZER

Based on $1000 per kg/day and 50 KWh/kg
= $480/kW @ 70% efficiency
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Equilibrium price of elecirolytic hydrogen

Excluding Storage and Distribution
Average Cost of Electrolytic Hydrogen

= Cost structure of electrolytic $60

hydrogen depends on system mix:

capacity factor vs. electricity price $50

= Grid-integrated electrolysis could
take advantage of low-price hours
of high renewable generation —
but how many?

$40
S30

$20

US-REGEN scenario results:

® |ndicates regional CF/price
combinations for electrolysis with s
100% renewables plus Y1 EJend- 10%x 204  30% a40% so%  e0%  70%  80%  90%  100%

use H ) demand in WECC CAPACITY FACTOR FOR ELECTROLYZER
Based on $1000 per kg/day and 50 KWh/kg
= 5480/kW @ 70% efficiency
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Mountain-South $100/fCO2 Scenario Example Dlspatch
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Mountain-South $100/tCO2 + Nele H2 Demand
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What are the limits of (direct) electrification?

Cars and light trucks
Heavy-duty trucks
Aviation

Bus / Transit / Rail
Maritime

Military

Space heating
Cool / Light / Appl. / Elec.
Water Heating
Other dual-fuel buildings

Process Heat / Cool
Industry boilers
Facilities / Other
Machine Drive

Constr. / Ag. / Min.
Feedstocks
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US 2050 Final Energy Demand in US National Electrification Assessment, Transformation Scenario

USNEA (EPRI, 2018) explored potential
electrification under a high carbon price

I ~ o L
6-7 quads scenario (“Transformation”).
—
- transport The “frontier” of electrification is uncertain,
. butinevitably, some energy service demand
will inevitably be more economically met
L with a non-electric low-carbon fuel.
O ~ . .
1 quad As a first cut, we canroughly approximate
I _—
buildings potential non-electriclow-carbon fuel
e m
demand as a fraction of residual non-electric
e — demandinthe USNEA Transformation case.
E—— ~ The resultisa rough order-of-magnitude
I —— 2. 3 quads estimate of the scale of low-carbon fuels
— industry demand of ~10 quads.
EEEE—— How will this be supplied? = New EPRI
——— study: Low Carbon Resources Initiative
0 2 4 6 8 10 12 14 16
Quad BTUs
m Electricity ™ Natural Gas ™ Petroleum ™ Coal = Bioenergy
2020 Electric Power Research Institute, Inc. All rights reserved. EI:EI ilgimf;?““éﬁﬁu“


http://www.epri.com/

=PI | research nsmirure

The Low-Carbon Resources Initiative (LCRI) is a five-year, focused R&D commitment to develop the pathways to advance low-carbon technologies
for large-scale deployment. This initiative is jointly led by EPRI and GTI. The goal of the initiative is to enable a risk-informed understanding of
options and technologies enabling significant economy-wide decarbonization through global partnerships and demonstrations, applied engineering
developments, and technology acceleration of the most promising options.
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Enable infrastructure for
future low-carbon fuel
options

Decarbonize sectors such as
bulk transportation, large
industries, and heating
networks in cold climates

Large-scale clean power
utilizing combustion
turbines
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Low-Carbon Power
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Renewables | CCUS

End Use
Industrial | Buildings | Hydrogen
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Duty-Transportation
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Low-Carbon
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Hydrogen | Biofuels

2o

and related,
low-carbon

Transmission,
Delivery, and Storage
Existing and New
Infrastructure | Pipeline
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Individual commitment
to environmental, social,
and governance (ESG)
efforts

Increase optionality of
low-carbon solutions

Leverage investments
across relevant sectors

Enable resiliency and
affordability of
low-carbon energy
system
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