Transport: How can the disruption lead to decarbonization?

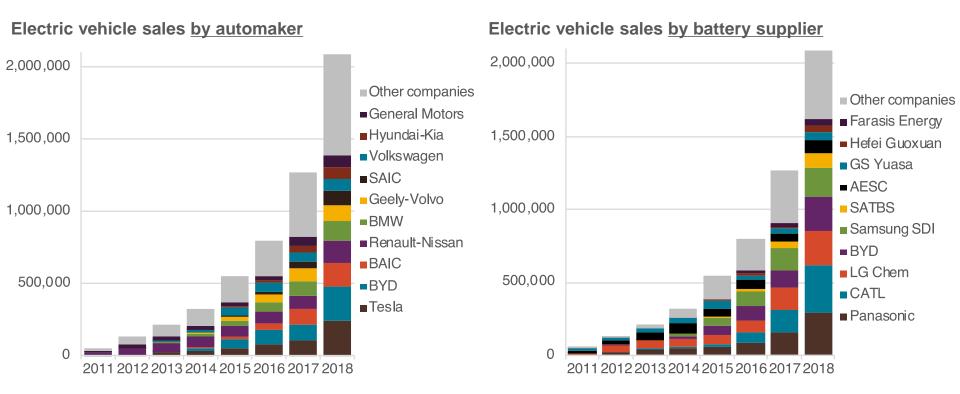
Drew Kodjak, Executive Director

Energy and Climate Research Seminar
The Liaison Capitol Hill
415 New Jersey Avenue, NW
Washington DC

Starting points

Electric vehicle growth

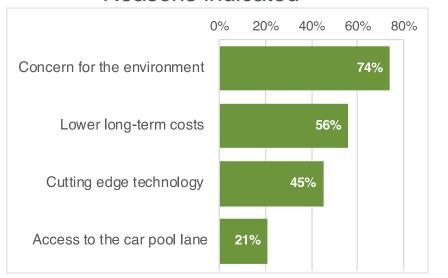
- Growth: 60%+ annual growth rate, 2 million EVs per year and growing
- Industry commitments showing order of magnitude higher scale are underway
- Battery innovation and scale could enable mainstream market in years ahead


Policies for the transition to electric vehicles

- Top EV markets around the world show us a complete policy package
- Reducing CO₂ emissions at triple the historical rate needed to decarbonize transport
- As EV cost parity is reached, policies including durable fiscal incentives, regulation, infrastructure support, and consumer campaigns remain critical
- We could proceed with similar steps for zero-emission trucks in the years ahead

Global electric vehicle growth

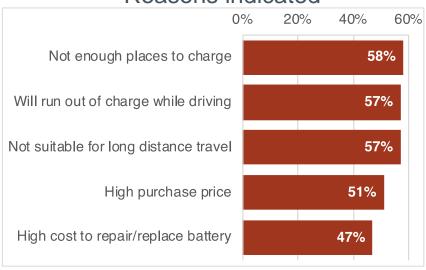
- Annual global EV production surpassed 2 million/year in 2018
- There are now 10 automaker groups selling over 80,000 EVs per year
 - Battery production: 5 companies supplying batteries over 200,000 EVs per year


3

EV barriers: Results from a recent survey

Are you likely to buy an electric vehicle the next time you buy a new or used vehicle?

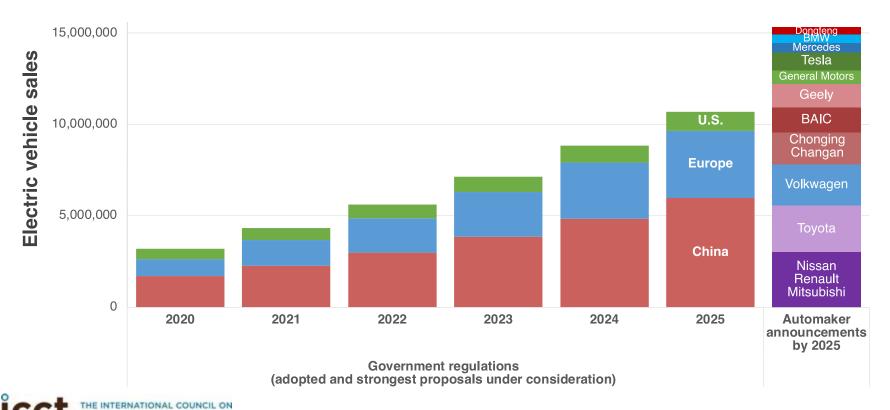
16% Yes


Reasons indicated

44% would pay up to \$4,000 more for electric 23% would pay over \$4,000 more for electric

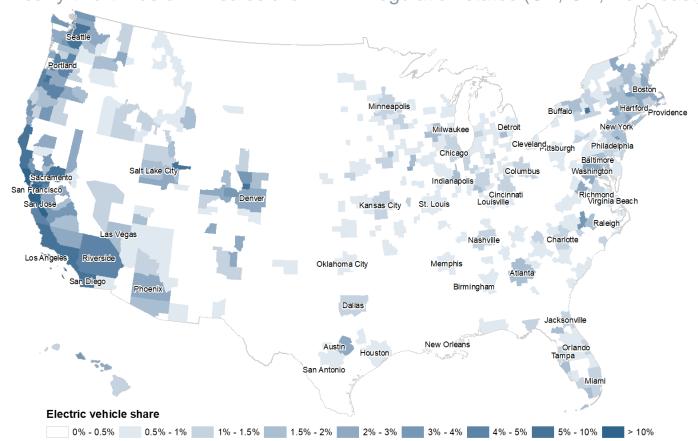
84% No (or unsure)

Reasons indicated



These are down 6 to 11 percentage points from 2017

Automakers increasingly share all-electric vision


- Automaker announcements by 2025:
 - Hundreds of new EV models, over \$200b in investments, and 15m EVs/year
 - Vehicle deployment would lead to higher volume than required by regulations
 - These will get the world to 10-15% electric sales by 2025

U.S. electric vehicle sales: Local markets

- Most EV sales are in markets with some combination of the following:
 ZEV regulation, incentives, extensive charging, city/utility promotions
 - Nearly two-thirds of EV sales are in ZEV regulation states (CA, OR, Northeast)

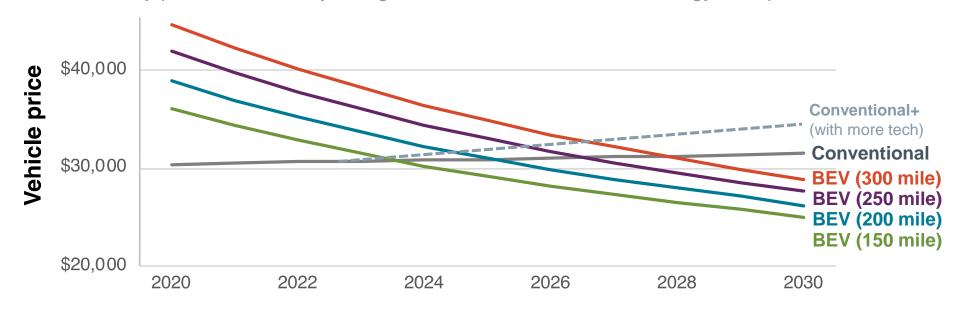
Top EV markets have a complete policy package

- 44% of world's EVs are in just 25 markets in China, Europe, Japan, US
 - Each market has regulations, model availability, incentives, infrastructure, local action
 - These areas are striving to overcome <u>all</u> the prevailing electric vehicle barriers

EV sales targets spread around the world

Government	Target year	Percentage of EV credits	ICCT estimate of percent EV sales
China	2020	12%	3 – 4%
California	2025	22%	8%
Quebec	2025	22%	10%
Europe	2025 2030	15% 37.5%	5 – 10% 15 – 20%

- China's New Energy Vehicle mandate is integrated into its existing fuel economy standards, an excellent first step but in need to substantial improvement in the next iteration of the standards.
- California forecasts only 8% EV penetration in 2025 due to credit multipliers which needs substantial enhancements to achieve a ~ 30% target by 2030.
- Quebec's policy is nearly identical to California's but with fewer credits
- Europe's policy currently only a proposal includes incentives for achieving substantial EV penetration levels but no penalties. We forecast substantial penetration levels due to major OEM commitments: VW (20 25% by 2025), BMW and Daimler (15 25% by 2025), Renault / Nissan (20% by 2020 depending on market conditions).


Energy efficiency and CO₂ standards will eventually drive EVs into the market

Passenger car miles per gallon, normalized to CAFE

Volume and innovation drive EV costs down

- Battery cost reductions enable electric vehicle cost parity
 - Parity points shown below for cars: 2024-2029 for 150-300-mile electric range
 - Parity points for crossovers and SUVs tend to be several years later
 - Parity points are faster yet, if greater emission control technology is required

Questions for the power sector

- 1. Size of the EV market. What information to you need to know about the size of transition to electric vehicles for light and heavy-duty vehicles?
- 2. Pace of transition. How much does it matter to understand the speed of the transition?
- 3. Risk or Opportunity. Does the power sector view the transition to EVs as a threat to the stability of the grid, or as an opportunity to complement the rise in renewables?
- **4. Expanding into the EV sector.** How does the power sector think about recharging infrastructure and consumer information about EVs?

