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Overview 

• Understanding Flexible Operations: Drivers and 
Impacts 
 
• Insights from EPRI Research on Meeting 
Future Demand for Flexible Operations 
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Overarching Issues 

• Maintain grid security 

• Meet demand on sub-hourly basis 

• Maintain continuous environmental compliance 

• Implies challenges 

– How can flexible operations be valued such that added 
costs of flexible operations are recovered? 

– What is the optimal generation mix and level of 
generation capacity reserves? 

– Answers are key to assuring future asset viability 
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Natural Gas Prices and Demand for Gas Unit 
Flexible Operations 

• Low gas prices in North America 

– Accelerating shift to higher capacity 
factors for gas-fired assets 

– Putting coal on the margin 

– Gas competitive with nuclear 

• High gas prices internationally 

– Increasing layups of gas-fired plants 
in Europe 

– Increasing transients in operation of 
gas plants 

Trends in Worldwide Gas Prices 
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German Power Generation (January 2012) 

Anti-correlation between peak demand and wind generation  
Significant cycling of gas and coal assets 
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Range of Variability Is Challenging 

Max for year near the 
50 GW of capacity 

Minimum < 5 GW 

Range = 100% down to 10% of peak 30 hours 

~30 hrs 
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Engineering Challenges of Flexible Operation 

• Drivers 
– Variable generation (i.e., wind and solar) 
– Demand response 
– Automated load management and aggregation 
– Distributed generation 
– Changing demand (i.e., load curve) 
– Changing economics (e.g., natural gas prices) 
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Modes of Flexible Operation: Impacts 

Asset 
Operational 

Changes 

Impacts on Plant 
Operations and 

Maintenance 

• Faster Load Ramps 

• More Startups 

• More Frequent Load 
Changes 

• More Frequent and 
Deeper Minimum 
Load Operation 

• Reserve Shutdown 

• Increased Fuel Costs 

• Increase in Number of 
Thermal Cycles 

• Reduced Plant 
Efficiency 

• Maintaining Cycle 
Chemistry 

• Increased Corrosion 

• Risk of Operator Error 
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Engineering Challenges of Flexible Operation 

• Limitations on flexible operations 
– Minimum temperature and pressure conditions 
– Emissions controls requirements 
– Design limits on thermal and mechanical stresses 
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Flexible Operation: Major Damage Mechanisms 

•Thermal fatigue 

•Creep-fatigue interaction 

•Corrosion pitting 

•Differential thermal 
expansion 
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Damage Effects Are Not Immediate 
Increasing HRSG Tube Failures over Years 
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VGP:  Vertical Gas Path 
HGP:  Horizontal Gas Path 
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Operational Impacts 

• Increased heat rate 

• Lower capacity factors… lower revenues 

• Increased emissions levels per MWh 

• Fuel contracts and inventory management 

• More plant transients… increased opportunity for human error 

• Maintenance costs incurred during reserve standby 

• Accelerated rate of material damage 

• Requires change to plant preventive maintenance strategy 

Economic viability of generating asset is the major concern 
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Cost Impacts of Flexible Operation 

• Strategically important to plant owners: 

– Basis for bidding, rate cases, capital budgets 

– Cost has both tangible and intangible elements 

• Cost evaluation is technically challenging: 

– Limitations on availability and accurate use of historical data 

– Relevancy of statistical sample of plants 

– Costs typically realized years after start of cycling operation 

• Potential approach to improved cost evaluation: 

– Pareto analysis of cost elements 

– Industry collaborative – common framework for self-assessment 

– Benchmark against some component life-consumption models 
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Insights on Meeting Future Demand for 
Flexible Operations 

• Ongoing research 
– Damage effects 
– Case studies 
– Operational and maintenance strategies 
– Anticipating challenges through fleet 

transition studies 
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Insights on Meeting Future Demand for 
Flexible Operations 

• Anticipating challenges 
 
– Will transitioning the generation fleet evolve 

such that fleet operational flexibility capabilities 
will be adequate to support increasing variability 
in generation and demand? 
 

– To what extent do costs and operational 
limitations associated with flexible operations of 
generation assets affect mix of technologies in 
the future generation fleet? 
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Insights on Meeting Future Demand for 
Flexible Operations 

• Integrate generation planning and unit 
commitment perspectives 
– Consider long-term asset investment decisions and evolution in 

generation asset mix 
– Include policy and economics drivers 
– Assess flexibility needs in context of regional differences in 

generation fleet composition 
– Consider role of electricity trade 

 

• Research approach 
– Intertemporal, CGE model 
– Unit commitment model 
– Calculation of flexibility metrics 
– Sensitivity studies 
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Integrated View of Multiple Regions 
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Example: National Generation Mix 

0

1000

2000

3000

4000

5000

6000

2010 2015 2020 2025 2030 2035 2040 2045 2050

TW
h

PTC Scenario Solar

Geothermal

Biomass

Wind

Hydro+

Nuclear (New)

Nuclear (Existing)

Gas w/CCS

CCS Coal

New Gas

Existing Gas

New Coal

Existing Coal Ret

Existing Coal

Baseline



19 © 2014 Electric Power Research Institute, Inc. All rights reserved. 

Example: Texas Region Capacity Mix 
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Unit Commitment (UC) Model 

• Electrical power system simulation of optimal dispatch of 
generating units on a grid 

• Large-scale mixed-integer optimization problem 
• Examples of inputs 

– Ramp rates 
– Minimum turndown limits 
– Startup costs 

 Time Horizon Seconds (or less) Decades 

Detail System Component 

Capacity 
Planning Production 

Cost Unit 
Commitment 

Load Flow 
Protection 

and Stability 
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Example: TX Region, 2030, Selected Month 

NGCC dispatch with 
ramp rate, turndown 

constraints  

NGCC dispatch with 
no constraints  
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Example: TX Region, 2030, Selected Week 

NGCC unit count and generation  
with ramp rate, turndown constraints  

NGCC unit count and generation  
with no constraints  
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Example: TX Region, 2015 and 2030 

Ramp Duration Curve 
comparing variable 
generation, net load 

(2015) 

Ramp Duration Curve 
comparing variable 
generation, net load 

(2030) 

-15

-10

-5

0

5

10

15

0 1000 2000 3000 4000 5000 6000 7000 8000

Ra
m

p 
M

ag
ni

tu
de

 (
GW

)

Duration (hours)

2015 Scenario, Texas

Demand

Variable Gen

Net Load

-15

-10

-5

0

5

10

15

0 1000 2000 3000 4000 5000 6000 7000 8000

Ra
m

p 
M

ag
ni

tu
de

 (
GW

)

Duration (hours)

2030 Ref Scenario, Texas

Demand

Variable Gen

Net Load



25 © 2014 Electric Power Research Institute, Inc. All rights reserved. 

Characterize and Measure Flexibility 

• Examine start/stop, ramping, low-load operations 
behavior under wide range of conditions with 
different generation technology mixes 
 

• Define, calculate key metrics, e.g.: 
–Distribution of capacity vs. startup times 
–Ramp rates, durations, and statistics 
–Insufficiency of capacity capable of providing 

necessary flexibility capabilities: 
•Duration of time periods with “flexibility deficit” 
•Magnitude of deficit in capacity terms 
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Other Emerging Insights 

• Will over-reliance on imports/inter-regional trade create new 
generation planning challenges? 

• To what extent do new “mission profiles” (e.g., prolonged low 
turndown operations, different patterns of output) imply: 
– Needs for new power plant staff capabilities and training? 
– Needs for new organizational and O&M procedural 

approaches? 
• Need to focus technology R&D on specific capabilities, e.g.: 

– More rapid 1–3 hour ramping capability 
– More resilience of flexibly operating units through improved 

design, monitoring & diagnostics, and maintenance (e.g., 
HRSG drain design and maintenance) 

– Establish capabilities to achieve lower levels of power output 
for longer periods of time (i.e., low turndown) 
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Together…Shaping the Future of Electricity 
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EPRI Research on Flexible Operations and Fleet Transition  
Flexible Operation: Major Damage Mechanisms 

• Thermal fatigue 

– Affects boiler-turbine circuit 

– Temperature mismatch 
between steam and metal 
surfaces 

– High amplitude stress 
cycles result 

– Rapid cooling caused by 
liquid quenching; surface 
tensile stresses 

tensile stress 

compressive stress 

hot fluid 

cold metal 

Thermal Stress 

Tube-to-header 
crack in HRSG 

Ligament cracking in 
boiler header 

Thermal stress process 

tensile stress 

compressive stress 

cold fluid 

hot metal 
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Flexible Operation: Major Damage Mechanisms 

• Creep-Fatigue Interaction 

– Creep damage found in units 
operating near design life 

– Cycling these older units can 
increase fatigue damage 

– Interaction of these mechanisms is 
synergistic, greatly reducing 
cycling operational life 

– Remaining life estimation is area 
of significant study 

Fatigue 

Creep 

Creep-Fatigue Interaction 
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Flexible Operation: Major Damage Mechanisms 

• Corrosion pitting 

– Associated with unit layup 

– Unprotected metal surfaces 
exposed to oxygen, water, and 
oxygen 

– Resulting pitting can initiate 
corrosion-fatigue cracking  

– New research looking at 
feedwater treatments that 
protect surfaces during 
shutdown 

Pitting on steam 
turbine rotor 

Pit morphology 

Corrosion in 
boiler tubes 
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Flexible Operation: Major Damage Mechanisms 

• Differential Thermal Expansion 

– Affects components in boiler, 
turbine, generator 

– Accelerated wear of generator 
winding insulation due to load 
swings 

– Generator wedge fretting 

– Risk of axial rubs in steam turbines 
due to relatively rapid expansion 
during fast starts 

Cycling accelerates wear of 
stator windings 

Generator rotor after 
frequent cycling 
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Flexible Operation: Major Damage Mechanisms 

• Flow-Accelerated Corrosion 
(FAC) 

– Mechanism influenced by 
material and local steam 
conditions 

– Cycling and reduced 
minimum load operation 
exposes new areas to risk 

– FAC prevention is a 
significant safety issue Changing steam conditions cause FAC in 

heaters, extractions, drains 
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Flexible Combined-Cycle Plant  
An Integrated Approach to Improve Flexibility Capabilities 

1 

2 

3 

4 
5 

6 

• Reduce NOx/CO emissions 
at low load 

• Install inlet dampers 

• Isolation/venting of fuel 
headers 

• Improved drains and 
attemperator sprays 

• New alloys – thinner 
walled headers 

• Improved tube-to-header 
connection 

• Stack damper 
• Steam bypass 

2 

1 

• Improved drains 3 

• Improved casing 
design to reduce 
distortion 

• Improved thermal 
insulation 

4 

• Accommodation of 
winding  thermal 
growth 5 

• Automated startups 
• Improved operator 

displays and alarm 
management 6 
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Future Plant Considerations 

• Design basis must reflect emerging role of coal and gas as 
load-balancing assets 

• Potential conflict between flexibility and thermal efficiency 

• Materials improvements can reduce thermal stress 

• New makeup water and air removal schemes 

• Management of water quenching (improved drains and 
attemperator sprays) 

• System-approach to combined cycle plant design 

• Provide operators the tools to improve situational awareness 

Industry initiative on intrinsically flexible plants is needed 
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Improving Asset Flexibility: Systematic Approach 

Equipment Impacts Operational 
Impacts 

Cost Impact 

Improved Flexible Operation of 
Existing Assets 

Improved Flexible Operation of Future Plants 

Improve operational flexibility of current and future assets 
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PRISM 2.0: Improved Regional Model 

General 
Equilibrium 

Economy Model 

• Aggregate Economic 
Representation 

• Energy Markets for Oil, Natural 
Gas, Coal, and Bioenergy 

• Foreign Exchange 

• Land use (Ag and Forest) 

Energy Demand 
(Electric & Non-

Electric) 

• Energy Efficiency across 
Commercial, Industrial, and 
Residential Sectors 

• Transportation: Detailed model of 
vehicle technologies and 
intermodal choices 

Electric Sector 
Module 

• CO2 Mitigation Technologies 

• Environmental Controls: Air, 
Water, Land 

• Transmission 

U.S. Regional Energy, GHG, and Economy (US-REGEN) Model 
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Design Choices 

Static/Dynamic Recursive Intertemporal 
Optimization 

Partial Equilibrium General Equilibrium 

Regional disaggregation National Aggregate 

Levelized cost /      process 
model 

Investment and Dispatch 

Large unit classes Individual units 

Peak-baseload Hourly (or less) 

Simple dispatch Unit commitment 

Pipeline transmission Detailed power flow 

Aggregate sectors Industrial detail 

Fuel as sectoral input End-use service structure 

Framework 

Electric Model 

Macro Model 
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• Baseline reference:  EIA Annual Energy Outlook (AEO) 
– Projected level of energy demand (AEO 2011) 
– Reference energy prices (AEO 2013) 

 

• Electric sector policies 
– Renewables 

• Existing state RPS requirements 
• Production tax credit through 2020 

– Environmental 
• Environmental controls required on existing coal units 
(MATS, cooling water, coal ash) 

• CAA Sec 111(b): No coal units without CCS 

US-REGEN Reference Case 
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• Nuclear 
– New nuclear allowed 
– 80% of existing nuclear extended to 60 years 
– 6 GW constructed before 2020; maximum build rate = 7 GW/decade 

thereafter 
 

• Renewable Energy 
– Cost reductions over time 

 
• Coal 

– Existing unit lifetime = 70 years 
– CCS (50% or 90%) retrofit available as of 2025 
– CCS (50% or 90%) available for new units as of 2030 

 
• Transmission 

– Historical growth rates 

US-REGEN Reference Case 
Technology Assumptions 
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Example Reference Case 
UC Output – TX Region, 2015 and 2030 

Ramp Duration Curve 
(2015) 

Ramp Duration Curve 
(2030) 
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Inflexion Tool – Example Output 
Distribution of resource capacity vs. start up time 



42 © 2014 Electric Power Research Institute, Inc. All rights reserved. 

Inflexion Tool – Example Output 
3-Hour Ramp Magnitude 
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Inflexion Tool – Example Output 
Period of Flexibility Deficit Metric 
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