

Planning for the renewable energy future with grid investment

Asami Miketa IRENA Innovation and Technology Centre Sixth Annual Expert Workshop: Challenges in Electricity Decarbonisation, 18 October 2019, Paris

Increasing role of electricity in the decarbonized world

By 2050:

The share of electricity in the final energy demand reaches to 49%

VRE (Solar PV + wind) 60%

• Implications of a high share of VRE to long-term transmission planning

• Regional coordination in the context of clean energy transition – roles of planning scenarios

Implications of a high share of VRE to long-term transmission planning

• Regional coordination in the context of clean energy transition – roles of planning scenarios

https://www.irena.org/publications/2017/Jan/Planning-for-the-renewable-future-Long-term-modelling-and-tools-to-expand-variable-renewable-power

The importance of location for the economic value of VRE

Gujarat province, India: wind zones

Source: Lawrence Berkley National Lab, MapRE

Key planning implication:

Trade-off between resource quality and transmission investment

Geo-spatial planning

Tools: Geographical Information System (GIS), Maps

- Generation siting and long-term transmission development needs
- High-level screening scenarios for transmission network development
- Geographical dispersion of temporal variability

Planning scopes for techno-economic analysis

Application of planning tools ... with VRE

High-level transmission scenarios to be co-optimized with generation expansion planning

Latin American context

Summary from ""Exchanging best practices to incorporate variable renewable energy into longterm energy/power sector planning in South America" - 10 countries

- » Most countries have developed solar and wind resource maps to define renewable energy zones, with some adding multiple nodes and/or map layers of further technical and nontechnical information to aid model representation of transmission expansion
- » Important to note that investment and construction costs, and not only resource quality, can also be based on location
- » The general co-optimisation of generation and transmission expansion planning processes remains a challenge in many cases
- » The regional representation in long-term models is sometimes based on characteristics of other resources, such as hydro (in Brazil) or gas (in Argentina), and it is important to analyse whether different regional representations could have a material impact on model results

MENA context

Summary from ""Exchanging best practices to incorporate variable renewable energy into longterm energy/power sector planning in MENA" -15 countries

- » There are **established power sector planning practices** in only some of the countries.
- » Application of **simplified models of the grid at generation planning level is widely used**, especially for countries that have clearly separated operating areas, such as Saudi Arabia.
- » Using the development of a large-scale VRE plant in a remote area to interconnect two previously separated systems is being studied, notably by Saudi Arabia and Algeria.
- » For most of the countries, **the development of a VRE project** is preceded by a detailed grid integration study, which can lead to a revision of the siting of the plant based on the hosting capacity of the different possible substations.

• Implications of a high share of VRE to long-term transmission planning

• Regional coordination in the context of clean energy transition – roles of planning scenarios

https://www.irena.org/publications/2019/May/LTES-First-year-campaign-findings

Two events on the regional planning

 Planning across different geographical scopes – GSTIC Nov 2018 in Brussels Regional coordination of planning in the context of clean energy transition – WEC Congress September 2019 in Abu Dhabi

Key to access cost-effective flexibility options from the neighboring countries

- Regional studies show benefits of the trade and coordination with varying degree of pollical implications
- Government long-term plans rarely factor in the regional aspects
 - Use domestic resources for internal use
 - Plan to be exporters
- Bilateral agreements have been functioning well but many are based on contracts
- Need an interface between bottom up plan (driven by private sector) and top-down approach (driven by government leadership)

National-sub-regional coordination

- Denmark: standarlized dataset for planning (Denmark)
- Netherlands: adding up regional plans, standarazlied reference case to allow comparison

www.irena.org

Ongoing Energy Transformation: Drivers

• Policy imperatives

- Sustainable Development and Economic Growth (SDGs)
- Climate and Environmental agenda (Paris Agreement)

Annual energy-related CO₂ emissions and reductions, 2015-2050 (Gt/yr)

- RE Strong Business case
 - Policy frameworks, business and technology innovation
 - Dramatic cost reduction

Cost reduction (2010 - 2018)

VRE: Long-term investment implications

High relevance

	Generation	Networks
Adequacy	Firm capacity	Transmission capacity
Security	Flexibility	Voltage control capability
	Stability (frequency response and voltage response)	
	Most relevant	System-specific

Near-term relevance

Time dimensions of power sector planning

Geo-spatial planning

Inputs to other planning steps

- Co-optimization with generation expansion
- A part of technical network studies

Modular Development Plan of the Pan-European Transmission System 2050 (E-highway by ENTSO-E)

Analyzed with IRENA's power system investment model for the region, combined with the zoning analysis

Vast opportunities of VRE :

• 36% VRE penetration under the reference scenario

The benefits of the regional trade

System cost reductions associated with greater integration

Complementary generation patterns

Rwanda – DRC example:

High volumes of hydropower production at night can be exported to Rwanda, when there is a supply gap in Rwanda from the absence of domestic solar power generation.

Rwanda-DRC

Angola-Namibia