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Abstract 

Power system planning tools require hourly weather data to capture the variable conditions that influence 

electricity supply and demand (e.g., temperature, wind, and solar). It is well-established that using current or 

historical weather conditions is insufficient for planning a resilient system under climate change and that forward-

looking data are needed when conducting energy transition studies through 2050. However, nearly all global 

climate model (GCM) projections are limited to daily temporal resolution, presenting a data gap that must be 

addressed to incorporate climtae change projections directly into existing commercial tools for power system 

modeling. This paper presents an innovative approach to create hourly weather timeseries for future climates. A 

monthly quantile delta mapping technique is used to produce realistic hourly weather data for a future climate 

by adding the monthly climate change signal projected by climate models to historical weather data. This method 

preserves important, real-world characteristics from the historical record that are otherwise missing from climate 

model output, such as locationally-specific extremes which can be missing from coarse climate projections, natural 

variability which may not be well represented in the climate models, and important joint correlations among 

physically-linked variables such as wind, solar, and temperature. This approach has many potential applications in 

the power sector, including for capacity expansion and production cost modeling where select hourly timeseries 

are used for complex optimizations or simulations, as well as for resource adequacy assessments that evaluate 

large samples of realizations to identify possible extremes for stress-testing a future year of interest.  

 

 

 

 

 

 

 

 

 

 



 

 

Introduction 

Many power system modeling tools are designed to use hourly timeseries as input data. These tools typically use 

a representative sequence of hourly weather, often referred to as an 8760 timeseries, to capture the intra-annual 

conditions that influence power supply and demand, namely measures of effective temperature and renewable 

resource availability. This data are typically derived from historical meteorological data or synthetic profiles (e.g., 

a typical meteorological year). Increasingly, power system planners are interested in accounting for climatic trends 

and potential extreme events in the meteorological inputs to their simulation models (Craig et al., 2022). However, 

nearly all global climate model (GCM) projections are limited to daily temporal resolution, presenting an important 

data gap that must be addressed to explicitly represent the effects of climate change in power system planning. 

Filling this gap will enable more accurate planning of the clean energy transition, ensuring that the impacts of 

climate change are properly accounted for. Without this, relying solely on historical data could result in plans that 

fail to anticipate future conditions, with implications for resource adequancy, reliability, and energy costs. 

 

Until hourly climate model projections are widely available, an approach that translates daily resolution 

information from climate models into hourly timeseries is needed for many forward-looking power system 

analyses. Currently, several approaches exist, each with their own advantages and drawbacks. GCM interpolation 

is one approach that estimates hourly values from aggregated daily statistics (Chow & Livermore, 2007), but these 

methods fail to capture important diurnal fluctuations that have material consequences on electricity demand. 

Figure 1 illustrates this interpolation approach for the temperature variable, which is typically reported from 

climate models with a daily maximum, mean, and minimum value, and solar irradiance and wind speeds, which 

are limited to a single daily average value. Dynamical downscaling approaches use a higher-resolution climate 

model called a regional climate model (RCM) to increase the spatial and/or temporal resolution of a lower-

resolution GCM (Tapiador et al., 2020; Wang, Hamann, Spittlehouse, & Carroll, 2016). However, this approach 

requires significant resources and expertise to execute (Wood, Leung, Sridhar, & Lettenmaier, 2004). More 

recently, machine learning has been applied to produce future hourly time series. For instance, Buster, Benton, 

Glaws, & King (2024) developed a deep learning approach to spatially and temporally downscale climate models 

based on multiscale relationships in the historical record. Other approaches have been developed, such as a 

weather classification approach that uses k-nearest neighbor clustering to find the most analogous hourly 

historical weather sequence given daily GCM data (Hosseini et al., 2021). A limitation of machine learning is its 

tendency to overfit to historical observational data, constraining their generalizability to future conditions 

simulated by GCMs. Their relative lack of transparency also necessitates rigorous validation against established 



downscaling methods to ensure their predictions of climate variability are transferable and reliable. 

 

 

Figure 1: Top - hourly temperature (top) vs daily max and min values from Jan 1-10, 1940, for Nashville, TN. Max and min values are placed 
at the climatological coldest and hottest part of the day during January and then fit with a spline function. Middle – hourly solar irradiance 
(solid line) vs daily mean values (dashed line). Bottom – hourly windspeed (solid line) vs daily mean values (dashed line). Gray shading 
highlights differences between the mean, or max and min, and the hourly values.  

 

Another method that offers a simple yet robust approach to producing future hourly time series is delta mapping. 

Though typically used for bias correction, delta mapping can be used to scale historical data according to a 

projected climate change signal. More specifically, an adjustment, or delta, can be calculated using the change in 

statistical characteristics of a weather variable between a historical baseline period and a projected period from 

GCM simulations, then used to shift a historical timeseries so that it is more representative of a future climate. 

Several techniques have been developed based on this premise. Hiruta et al., 2022 utilized a simple mean shifting 

approach which involved adding the daily delta to a historical hourly time series. However, this carries the 

assumption that there will be a change in mean climate, but not a change in variability. A more advanced form of 

delta mapping is quantile delta mapping (QDM). The QDM method computes deltas for different quantiles of the 



distribution, incorporating changes in variability such as differences in shifts in the upper and lower tails 

(Bloomfield et al., 2022). This approach is meant to produce realistic patterns of variability as observed in the 

historical record, but shifted to capture changes in mean, variability, and extremes in GCMs. However, it relies 

solely on the projected shift in the daily mean values to infer shifts on an hourly basis which may fail to capture 

changing diurnal patterns that matter to power system planning.  

 

The QDM-based technique presented in this paper was first developed for bias correcting GCM data (Cannon, 

Sobie, & Murdock, 2015) and later added a multivariate quantile delta mapping (MQDM) approach to spatial bias-

correction (Cannon, 2018), which adapted the N-pdf transform method outlined in Pitie, Kokaram, & Dahyot 

(2005). Here we present a temporal application of this MQDM approach, repurposed to shift historical hourly 

weather data to future years. This approach has four distinct advantages over existing approaches. First, we 

employ a multivariate shift of daily minimum and daily maximum temperature for a more advanced treatment of 

important diurnal features. This has the benefit of retaining realistic hourly variation critical for modelling power 

system supply and demand. Second, the climatological shift is conducted for each month, capturing changes in 

seasonality projected by GCMs. These month-specific changes provide valuable information for changes will have 

a significant impact on the cost-effective scheduling, operation, and maintenance of future power systems. Third, 

an important design feature of this method is the emphasis on relative changes projected by GCMs rather than 

absolute values: the climate model simulations are used as a statistically-representative climatology, not precise 

forecasts for a future year like 2050. This feature also reduces the impact of local to regional scale biases in GCMs 

(e.g., models that tend to run hot vs. cold, or wet vs. dry). Fourth, leveraging the historical record conserves much 

of the original physical link between variables, such as wind, solar, and temperature, and this synchronicity may 

be critical for power system modeling.  

 

Additionally, this method can be used to expand the representation of annual variability in hourly timeseries, 

compared to current approaches that focus on a small number of representative years, because all historical years 

can be detrended and used to create an extended dataset with intrinsic variability over the length of the historical 

record, yielding a vast array (e.g., hundreds or more) of realistic hourly timeseries that can be used to represent a 

future climate under different warming scenarios and climate model formulations. Taken all together, this method 

combines key strengths of both historical and projection datasets. 

 

Approach 

We illustrate this method using an example location of Nashville, Tennessee, which experiences a wide range of 

temperatures, though this method for shifting historical meteorological timeseries to future years can be applied 

to any location with suitable data as described below.  



 

Data  

This method relies on two sources of climate data: one source of representative hourly data for the primary 

variable (i.e., temperature, as well as any synchronous variables of interest), and a second source for the 

distributional changes for the primary variable.   

 

In this paper, ERA5 historical reanalysis 2-m temperature data from the European Center for Medium Range 

Weather Forecasting (ECMWF; Hersbach et al., 2020) is used as the former, the underlying reference data to be 

shifted to future years. Reanalysis data is advantageous in that it is spatially and temporally complete and often 

available for an extended historical period for multiple variables of interest to the power system such as 

temperature, humidity, wind and solar irradiance. ERA5 data has an hourly temporal resolution, a spatial 

resolution of 31 km x 31 km, and is available from 1940 to present. While ERA5 data is used in this study, other 

sources of hourly historical data such station observations are also appropriate. This step of reference data 

identification also establishes the baseline climatology for the exercise; the National Oceanic and Atmospheric 

Administration (NOAA) defines the current 30-year climate normal period as 1991 – 2020 and that is used as the 

reference period here. 

 

For the latter source of distributional changes between the reference and the future climate period of interest, 

projections of daily maximum and daily minimum 2-m temperature are used from five Coupled Model 

Intercomparison Project phase 6 (CMIP6) climate models. Specifically, a subset of five GCMs featured in the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP; Warszawski et. Al., 2014) are used as these models were 

preselected to span a range of equilibrium climate sensitivities and the spatial grids and calendars of the raw 

model data have been adjusted to be consistent across the five models. For the present study, two climate 

scenarios from each model, SSP1-2.6 (SSP126; hereafter lower emission scenario) and SSP3-7.0 (SSP370; hereafter 

higher emission scenario), are used to create 10 variants of potential future climate states (5 models x 2 scenarios), 

with a focus on two future climates: 2036 – 2065 (representing the climate of 2050) and 2071 – 2100 (representing 

the climate of 2085). This is a design choice for illustration here and the approach can be applied using other 

model-scenario permutations as well1.  

 

After the reference and future data sources and climatological periods have been identified, there are four steps 

that are used in the monthly quantile delta mapping (QDM) technique.  

 

 
1 ISIMIP provides data from a range of standardized climate warming scenarios including the CMIP6 Shared 
Socioeconomic Pathways (SSPs) and the CMIP5 Representative Concentration Pathways (RCPs). 



Step 0 [Optional]: Expand the set of representative weather years 

This step transforms additional historical weather data to align with the trends of the chosen baseline in order to 

increase the sample size of representative weather years. If increased representation of variability is a priority this 

step is needed; otherwise, if the selected baseline climatology (e.g., 1991-2020) provides sufficient variation then 

this step can be skipped.  

 

 

Figure 2: Timeseries decomposition for Nashville, TN.  

The long-run historical data is first detrended to remove the warming signal. In this example, ERA5 data going 

back to 1940 is detrended using a first order polynomial detrending method. The timeseries is decomposed 

additively, which assumes seasonal periodicity is relatively constant over time (Cannon, Sobie, & Murdock, 2015). 

Once the trend and seasonality have been removed, only the residuals from the mean remain; thus the mean 

temperature must be added back to the timeseries. Each component of the decomposition is shown in Figure 2. 

In this example, the mean from the current climate normal period (1991 – 2020) is added back to the trend-less 

residuals and seasonal climatology to make all years similarly representative of the present-day climate. While 

recent years (e.g., 2010s) do not undergo a considerable shift, earlier historical years (e.g., 1940s) are effectively 

warmed to account for the historical warming signal (Figure 3). In other words, detrending the data and scaling to 

present-day imposes observed climatic trends onto the earlier candidate weather years to make them equally 

representative of the baseline climate period.  



 

Figure 3: Left: detrending of 2-m temperature for Nashville, TN with the mean for the full historical period (1950 – 2023) used to 
rescale the timeseries. Right: detrending of 2-m temperature for Nashville, TN with the mean for the current climate normal 
period (1991 – 2020) used to rescale the timeseries. 

While it’s not always feasible to use the full historical period of data, representation of natural variability is 

important and the ability of a candidate dataset to capture the range of variability should be considered. One way 

to determine the number of years needed to capture natural variability is to assess the empirical cumulative 

distribution function (CDF) of multiple candidate time periods, to identify the cumulative error between the 

available long-run distribution and the selected representation. (Note that these timeseries should first be 

detrended so the variability of the data is primarily natural variability as opposed to natural variability + external 

forcing (warming trend)). Figure 4 illustrates how a single historical year (e.g., 2023) does not capture the full 

distribution of the 74 (or 84) year period, especially with respect to a significant portion of the cold extremes as 

 

Figure 4: Daily mean detrended CDF for Nashville for 1-, 10-, 30-, and 74-year timeseries. Note, the cold tail of the 74-year CDF is still 
colder than the 30-year CDF because the 1970s and 1980s are not accounted for and had some of the coldest events in the eastern US. 



well as much of the hot extremes observed in longer timeseries. While it doesn’t capture the full range of 

temperatures, the 30-year timeseries (Figure 4, green line) aligns well with the full 74-year timeseries of 

temperature; this is consistent with the standard climatological definition of a climate “normal” as the three-

decade average of meteorological variables.   

 

 

Step 1: Calculate the projected shift in the climate variable 

Central to this approach is the ability to leverage limited (daily) outputs from climate models to characterize 

distributional shifts that can be applied to the reference data in a way that preserves the monthly, non-

stationary shifts that are observed in climate model projections. Most climate models report daily average 

values over their projection horizon, and in the case of temperature, daily maximum and daily minimum. The 

main approach presented here treats the daily maximum and daily minimum variables independently (Figure 5); 

step 2 discusses the multivariate approach that considers projected changes in the joint distribution among 

multiple variables. 

 

Figure 5: Illustrative non-stationary distributional shift in the detrended daily minimum temperature (left) and daily maximum 
temperature (right) for the baseline climate (2005) and the projected climate of 2050. The projections include all 5 models. 

 



First, projected changes in the daily maximum temperature from the climate models are used to univariately 

shift the daily maximum temperature values in the reference data using the quantile delta mapping method 

outlined by Cannon, Sobie, & Murdock, (2015) and applied on a monthly basis. This is done by calculating the 

quantile-specific difference (i.e., delta, or anomaly) between the model’s simulated historical distribution and its 

future distribution for each month. This univariate process is then repeated for daily minimum temperatures. 

Deltas are computed at regular intervals on the distribution (e.g., 20-100 quantiles) each month to account for 

seasonality and non-stationarity. As shown (Figure 5) for 2085, the extreme quantiles (e.g., 0.01 and 0.99) can 

have different deltas than the central quantiles, and as expected, the deltas tend to be larger for the higher 

climate scenario (green shading) than the lower climate scenario (orange shading). While larger deltas in the 

extreme quantiles may be robust, more testing should be done to explore the implications of quantile 

specification (e.g., appropriate number and coverage) depending on the sample size of the dataset.  

 

 

Step 2: Multivariate Transformation [if shifting 2 or more variables] 

If shifting more than one variable, the correlation between the two variables should be considered. Because 

daily maximum and daily minimum temperatures are used to create a future hourly temperature timeseries, 

they are treated multivariately. More specifically, a multivariate treatment is needed to ensure the distributions 

are being shifted consistently and so that there are no instances where daily minimum temperature is warmer 

after the shift than daily maximum temperatures. While this multivariate step can be used for variables other 

than just daily maximum and daily minimum temperature, the impact of this statistical process on the physical 

relationship between variables should be further explored.  

 

While QDM does not emphasize the dependence between variables, the multivariate relationship can be 

preserved by iteratively transforming the N-dimensional probability density function (pdf) of the variables in 

which the univariate QDM was applied in the previous step (Cannon, 2018). First, daily maximum and minimum 

temperature variables are combined into a single array and standardized together, then an N-dimensional pdf 

transformation, which randomly rotates the arrays in the variable space and applies a univariate adjustment 

before rotating it back, is conducted. This process results in an array’s joint distribution converging toward the 

target’s joint distribution when a large number of iterations is done. The result of this adjustment is a rank 

structure which is then reordered to obtain the final bias-adjusted series. This process, which builds on the 

method created by Pitié et al. (2005) and is discussed in further detail in Cannon (2018), effectively corrects the 

lost dependence between variables in the univariate shift.   

 

Step 3: Apply the deltas to reference daily maximum and daily minimum independently 



These month-specific deltas, created in step 2 and modified to account for dependence in step 3, are then 

applied additively to the corresponding quantile of daily maximum temperature values in the reference data, 

hence “quantile mapping” (Appendix A; Cannon, Sobie, & Murdock, 2015). This process is then repeated 

independently for daily minimum temperature. The result is two shifted daily maximum temperature timeseries 

and daily minimum temperature timeseries. The daily maximum temperature deltas for each model and 

scenario across each month are illustrated in Figure 6. 

 

 

Figure 6: Within-model quantile-specific monthly difference between the baseline climate period (1991-2020) and the 2050 climate period 
(2036-2065) shown for 5 GCMs and two warming scenarios for Nashville. The x-axis represents the monthly distribution of maximum 
temperature with 100 quantiles per month.  

 

Step 4: Convert the shifted daily maximum and minimum temperatures to hourly data 

To interpolate the diurnal profile of the reference timeseries, scaling factors are used to match the pattern of 

the other 22 hours between the shifted daily maximum and daily minimum temperatures of each day. The 

scaling factors are calculated as the fractional value of the difference between reference day’s maximum 

temperature and the subject hourly temperature divided by the same reference day’s diurnal temperature 

range (DTR). This results in scaling factors that can be multiplied by the shifted DTR timeseries to produce an 

appropriately scaled hourly future timeseries as shown in Figure 7. Not only does this technique preserve the 

diurnal pattern of the reference meteorology but it also preserves the intra-annual chronology from a “real-

world” benchmark timeseries.  

 



 

Figure 7: Example of new timeseries created with scaling factors. Data is July 5 – 7, 2022 for Nashville, TN. [This figure can be further 
annotated to show the DTR of the reference timeseries and the shifted timeseries and how an interim hour, say midnight, might be 
interpolated.] 

 

Discussion  

Once this methodology has been applied across variables of interest, the resulting future hourly timeseries retains 

the geophysically synchronous and chronological properties of the historical data, but with a seasonally varying 

non-stationary shift based on individual climate models and scenarios. This preserves realistic weather variability 

in a way that is forward-looking and consistent with the magnitude and higher-order dimensions of climate model 

projections. The relatively large spread that is visible across the 10 future climate realizations provides important 

representation of the uncertainty in possible futures (Figure 8). While the hourly climatology for the two climate 

scenarios is largely similar when shifted to 2050, the difference is generally larger when shifted to 2085 (Figure 

8a). There is also considerable spread across models (Figure 8b), thus multiple models should be considered to 

account for the model uncertainty. By shifting the historical hourly data to the climate of 2050, the shape of the 

annual climatology is largely maintained, though there is some seasonal variation in the amount of change. This 

is consistent with how different climate scenarios are projected to diverge over time, with warming under lower 

climate scenarios leveling off around mid-century and warming continuing under higher scenarios through the 

end of the century (Lehner et al., 2020).  



 

Figure 8: a.) Historical (2005 climate) and shifted daily mean temperatures for a single model (UKESM) and 2 climate scenarios for 2 future 
climate years (2050 and 2085). b.) Historical (2005 climate) and shifted daily mean temperatures for the 2085 climate corresponding to 
projections from 5 models and 2 climate scenarios.  

Visualizing the shifted dataset during selected events of extreme temperatures helps demonstrate the utility of 

this method for developing forward-looking data to use in modeling the power system during moments of 

potential stress (Figure 9). During the December 2022 cold air outbreak in Nashville, temperatures reached -1°F 

the morning of December 23rd (panel a, b). Shifting the detrended event timeseries (which also shows a minimum 

temperature of -1°F) with a single model, the resultant low temperature on December 23rd is found to be 1°F. In 

other words, if this weather event were to “re-occur” in the climate of 2050, the event would generally be +2°F 

warmer. Like extreme cold, extreme heat is projected to increase in a warming climate, adding new levels of stress 

to the power grid during the summer season. The June 2012 heatwave in Nashville is generally warmer in the 

climate of 2050 (panel c, d); while not every hour of the day is warmer than the historical timeseries, the nighttime 



low temperature and daytime high temperatures are as much as +4°F warmer. More specifically, the warmest 

temperature is shifted from 107°F to 108°F.  

 

 

Figure 9: Example extreme temperature events for Nashville, TN showing the historical reference (both original and detrended) and the 
MQDM-shifted timeseries for the 2050 climate corresponding to projections from a single model (GFDL) and scenario (SSP370, higher climate 
scenario). a.) December 2022, b.) 7-day window from December 19 – 25, 2022 to capture an extreme cold event, c.) June 2012, d.) 7-day 
window from June 24 – June 30, 2012, to capture an extreme heat event. Note, time of day is GMT.  

 

The two shifted extreme events will be different across different models and different scenarios. The GFDL 

model, for instance, tends to be cooler than other models and generally shows less warming, or smaller shifts in 

the timeseries (Figure 10). The shifted distributions can be compared to the detrended historical distributions to 

get a better idea of how this method effects the timeseries cumulatively.  



  

Figure 10: Boxplot of detrended historical hourly timeseries (1950 - 2023, gray) and the full reference timeseries MQDM-shifted to the 2085 
climate for each of the five models under a higher climate scenario. Boxplot whiskers show the 1st to 99th percentiles, with dots showing 
outliers.  

To convey the changes in key meteorological statistics between the reference and shifted hourly timeseries more 

directly, six benchmark temperature metrics are shown in Figure 11. For both the mean temperature and 1st 

percentile, the projected shift is at least 2°F or more from the historical baseline, with a larger shift in the higher 

climate scenario relative to the lower climate scenario. The shift ranges from 2°F in the coldest model in the lower 

scenario, to 6.5°F in the warmest model for the higher climate scenario. The projected shift in the 99th percentile 

is more variable than the mean and 1st percentile, with ranges from 0.5°F, in the coldest model in the lower 

scenario, to nearly 10°F in the warmest model for the higher climate scenario. Shifts in the most extreme values, 

which are the record minimum and record maximum temperatures for the full historical and shifted periods, show 

similar variability across models.  

 

For the record minimum temperature, under the lower climate scenario (green points) all models project a range 

of warmer values, while for the higher climate scenario the projected period minimum temperature is tightly 

grouped with one single model even projecting a minimum temperature lower than the historical record. In this 

case, the GFDL model, which is generally a colder model over the continental United States, has a negative delta 

for the 1st quantile (refer to Figure 6). This negative delta leads to a decrease in the 1st quantile of the shifted 



timeseries. This outlier is somewhat counter-intuitive but should not be interpreted as a result that extreme cold 

is expected to become more frequent or more intense, rather the majority of models for both scenarios show a 

warming of the most extreme cold temperatures (Blackport, Fyfe, & Screen, 2022; Smith and Sheridan, 2020).  

 

 

Figure 11: Changes in five temperature metrics for two climate scenarios for Nashville, TN: 1.) mean temperatures, 2.) 1st percentile of hourly 
temperatures, 3.) 99th percentile of hourly temperatures, 4.) record minimum temperature, or coldest temperature over the period of record 
in the hourly data, 5.) the record maximum temperature, or warmest temperature over the period of record in the hourly data. 

 

Representation of discrete extreme events  

Another way of data validation directly addresses the importance of representation of discrete extreme events 

that could cause stress to the power system. Here we provide a comparison of the future-shifted (multi-model 

ensemble median) and raw ISI-MIP CMIP6 (multi-model ensemble) annual number of hot and cold days, where 

hot (cold) days are defined as the 95th (5th) percentile of maximum (minimum) temperature over the 1991-2020 

reference period (Figure 12). 



 

 Figure 12: The number of annual cold days (left) and hot days (right) across datasets. Gray values show the historical frequency of cold and 

hot days in the ERA5 data (Hist) and model simulations (Hist Sim). Green values show the frequency under a lower climate scenario (ssp126) 

for 2050 in the shifted (SSP126 Shifted) and raw climate model (SSP126 Raw) data. Orange values show the frequency under a higher climate 

scenario (ssp370) for 2050 in the shifted (SSP370 Shifted) and raw climate model (SSP370 Raw) data. A boxplot is overlaid on each of the 

scatterplots to better depict the distribution. The scatter is randomly jittered for each category. Due to the fact that the historical period 

ends in 2014 in the CMIP6 models, we use SSP1-2.6 to provide data for 2015-2020. 

Overall, yearly hot and cold day counts within the MQDM-shifted timeseries correspond well with the raw ISI-MIP 

GCM output. As expected, the median number of hot days increases in 2050 climate conditions and across 

emissions scenarios, while the median number of cold days decreases in 2050 climate conditions. For this reason, 

there is an argument to be made to retain historical extreme cold events as conservative future planning 

scenarios, as there is ready access to many relevant data streams compared to simulations. Lastly, it can include 

historical years in future scenarios as a lower bound for risk assessments particularly concerned with the impact 

of extreme cold on the power system. 



Finally, to investigate whether the chronological profile of heat events is comparably represented in the shifted 

future-climate time series, we compare the top three peak heat and cold events by plotting daily extreme 

temperatures for the two-week period surrounding the peak. We find that the MQDM-shifted and raw GCM 

events have similar magnitudes (Figure 13) and temporal profiles. This provides additional justification that the 

hourly shifted weather years maintain the magnitude of extreme events in the original (daily) climate model data.  

 

 

Figure 13: Timeseries of temperature extremes for the top three peak heat and cold events in the 2050 climate, where the MQDM timeseries 

(red for extreme heat and blue for extreme cold) is compared to the a single CMIP6 model output, IPSL (dashed orange). The week trailing 

and proceeding the event is shown to compare how the event unfolds in both the MQDM-shifted and raw GCM projections.  

Considerations when applying to non-temperature variables 

This paper has used the temperature variable to illustrate and discuss the MQDM method as adapted for hourly 

resolution power system applications, though it can be used for other variables as well. However, not all variables 

are projected to change significantly, and some variables, like wind speeds and solar irradiance, have considerable 

uncertainty in the projected changes. In the case of statistically insignificant or discontinuous changes, the user 

may choose to use the unshifted historical data. In the case of high uncertainty in the projected changes of certain 

variables or disagreement across models, users should take care in implementing this method, especially in a 

multi-variate context with temperature, wind and solar, as over-manipulation may violate physical relationships 



between correlated variables. Furthermore, if no historical trend is evident, the detrending step can be skipped 

to not introduce additional uncertainty.  

 

In the example laid out in this paper, there is justification for shifting temperatures because there is a clear 

warming signal in the historical period (refer to Figure 2) and in the climate model projections (refer to Figure 6). 

Other variables, like solar irradiance and wind speeds, may not necessarily need to be shifted. Thus, the resulting 

forward-looking dataset with synchronous hourly timeseries of temperature, wind and solar would include 10 

variants of shifted temperature data (reflecting 5 climate models and 2 warming scenarios) each paired with a 

single wind and solar realization (the reference timeseries). While there is uncertainty introduced when shifting 

only a single variable in a multivariate dataset, in terms of preserving the physical relationship between the 

variables, the added uncertainty is likely regionally dependent. More research would be needed to determine the 

amount of uncertainty introduced as well as if the added uncertainty is comparable to the components of 

uncertainty in raw ISI-MIP climate model projections (Lehner et al., 2020).   

 

Shifting atmospheric moisture variables 

A warmer atmosphere will be capable of holding more moisture, thus for many locations, the increase in 

atmospheric moisture may need to be accounted for when applying this method. However, atmospheric moisture 

is quantified with both absolute (e.g., dewpoint) and relative (e.g., relative humidity) variables, thus if the 

relationship between temperature and atmospheric moisture is projected to remain constant in the future, then 

relative moisture variables may be leveraged to shift absolute atmospheric moisture variables. For example, 

unshifted relative humidity may be used alongside the shifted temperature values to calculate the shifted absolute 

atmospheric moisture metrics, like dewpoint or wet-bulb temperatures. More specifically, once the shifted 

temperature (i.e., dry-bulb temperature) values have been computed, the shifted dry-bulb temperature and 

unshifted relative humidity values can be plugged into an equation to compute shifted dewpoint and/or wet-bulb 

temperature for each climate model and scenario. This is a straight-forward process as the time dimension of the 

unshifted relative humidity values will align with the shifted dry-bulb temperature values.  

 

However, to justify this approach, it must first be shown that the relationship between temperature and moisture 

is projected to remain fairly constant. In other words, the absolute moisture content should be projected to 

change at a similar rate as temperature such that the relative humidity is not projected to change. While it is highly 

unlikely that relative humidity will not change at all in future climate model simulations, even if just due to natural 

variability, the changes may be negligible. Significance testing, such as Theil-Sen slope estimation of daily or annual 

mean relative humidity, can be used to inform this decision. The fractional contribution of the change in relative 

humidity to absolute atmospheric moisture can also be used. More specifically, if the relative humidity is projected 



to increase by 2%, but that change only contributes to a small increase in the wet bulb calculation (e.g., 0.1°F), 

then perhaps this increase in relative humidity can be ignored. While this method of using the unshifted relative 

humidity and shifted dry-bulb temperature to shift absolute atmospheric moisture metrics (e.g., dewpoint and 

wet-bulb temperature) will introduce caveats, caveats will also be introduced if using the quantile-delta mapping 

method to shift atmospheric moisture. There is inherent subjectivity introduced, but multiple steps can be taken 

to limit the subjectivity and create informed projections of both temperature and atmospheric moisture, and 

potentially other climate variables.  

 

Conclusion 

While climate model projections lack the hourly resolution that is often necessary for planning in the energy sector 

and beyond, they can be leveraged to create realistic synthetic future timeseries that preserve the critical 

characteristics of the data, namely the trends and extremes. There are several benefits to doing this in that it 

captures real-world variability from the historical record and creates a large sample of realistic climate-adjusted 

profiles. This method also conserves much of the original physical link between synchronous meteorological 

variables which is critical as many extreme weather hazards manifest via multiple variables. Historical data sources 

have the advantage of more complete coverage of secondary variables like water temperature and stream flow, 

which are often missing from climate model projections.  

 

There are limitations to this approach that should be considered. Firstly, this method is best suited for single points 

as the impact on spatial coherence by shifting each grid point individually has not been assessed. Before applying 

this method independently to contiguous grid cells, more research is needed to determine if the relationship 

between neighboring locations is sufficiently preserved when the quantile-delta mapping is conducted at the 

individual cell-level. Alternative approaches for regional application could explore the joint distribution of 

surrounding cells to better reflect the spatial relationship. Another limitation may be introduced when shifting 

mean variables. While climate models generally have daily maximum, mean, and minimum temperatures, they 

tend to only report other variables at a daily mean resolution. A univariate shift of the daily means has the 

drawback that extremes are not expected to shift uniformly with means, thus the tails of the shifted distribution 

may not be shifted appropriately. Lastly, to the extent that this approach is applied to individual variables (i.e., 

shifting one variable but not others), this may impact the relationship between variables (e.g., correlations). While 

these changes may be negligible, certain variables may have a higher interdependence, making a multivariate 

adjustment more appropriate. Additional research is warranted to quantify the uncertainty introduced by 

combining shifted variables with non-shifted variables for analysis or modeling purposes.  

 

The detrending method presented in Step 0 is a relatively simple approach based on additive decomposition into 



linear trend, seasonal climatology, and residuals. This is just one of several possible methods that could be applied 

in this optional step. We acknowledge that the linear form includes the implicit assumption of stationarity, and 

plan to explore other detrending methods in future work, including the application of a QDM method for shifting 

historical years to the baseline climatological period. Ultimately, the detrending method can be the choice of the 

user. 

 

Future work will focus on validation of these shifted timeseries profiles against the raw ISI-MIP climate models as 

well as other dynamical, statistical, and hybrid approaches described in the introduction. Specifically, a more 

detailed comparison of the statistical properties (e.g., variability and extreme event characteristics) of these 

synthetic profiles versus the raw ISI-MIP daily GCM projections, as well as a deeper dive into how well the synthetic 

profiles represent extremes like heat waves, cold events, and droughts, is needed. It will also be beneficial to 

explore alternative approaches to help identify when different methods are more appropriate for the application 

at hand. Some of these approaches are rather simple, like applying a fixed stationary adder (e.g., +5°F) to all 

historical 8760s to represent a future year when temperatures are projected to be 5°F higher on average, or 

temporal downscaling by linear interpolation between the climate models’ daily min, max, and mean values to 

create hourly data. Others are more complex, such as the method outline in this article, or the use of regional 

climate models (RCM) initialized with daily climate model data to produce output variables with hourly resolution.  
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