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1 BACKGROUND 

As residential energy demand continues to evolve, new and innovative modeling techniques will 
be essential in helping utilities anticipate demand-side changes. Modern tools will require more 
granularity (both spatially and temporally) and flexibility in order to adapt and answer the 
increasingly complex questions found in system planning. In an effort to address these 
challenges, EPRI developed a detailed bottom-up modeling framework, later dubbed LoadSim 
(short for Stochastic Behavior-based Load Simulator), in which the characteristics of the home, 
its individual end-uses, and the behavior of its occupants are modeled in tandem [1]. This holistic 
approach allows for the development of highly resolved (sub-hourly) disaggregated estimates of 
demand. Due to the stochastic nature of the framework, simulations can be run for many homes, 
resulting in the smooth diversified load shapes typical of existing tools, or for a small number of 
homes, demonstrating the large fluctuations that may be seen by a distribution transformer or 
community energy system. While initial efforts focused on assembling the core components of 
the model, further efforts have focused on extending LoadSim to provide a more complete 
representation of household energy trends, along with a validation of the framework [2]. 

To date, this framework has been used for a variety of applications: 

• Generation of synthetic load shapes based on differences in residential demand driven by 
behavioral characteristics, end-use attributes, and changing climate conditions. 

• Characterization of changing coincidence and diversity factors due to electrification and 
energy efficiency for use in distribution planning and secondary system design. 

• Utilization of loads as a resource (e.g., virtual power plants) considering the impact of 
demand flexibility, rooftop photovoltaics, and battery energy storage systems. 

• Evaluation of the economic tradeoffs associated with changes in end-use demand. 

A review of LoadSim’s underlying methodology, as well as a validation and benchmarking exercise 
undertaken against established modeling practices, is provided as part of this document. 
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2 METHODOLOGY 

Occupant Behavior Modeling 

Within LoadSim, demand estimates are dependent on a variety of factors. These include 
environmental conditions, the set of end-use loads present within the home, and the use of each 
load. The use of each load is dependent upon the behavioral patterns of a household’s occupants. 
These patterns can vary significantly based on the time of day and day of the week that is 
observed. The technique implemented here consists of using time-use data, Markov chains, and 
the Monte Carlo method of repeated random sampling to model occupant behavior [3]. 

American Time Use Survey 

Time-use data is available from a variety sources (both nationally and internationally) and is 
typically collected through surveys in which individuals self-report the activities they participate 
in throughout the day. These surveys, often conducted by universities and governmental 
organizations, aim to provide researchers with a reliable source of data describing how people 
utilize their time. Within LoadSim, data from the American Time Use Survey (ATUS) is used. This 
survey, sponsored by the U.S. Bureau of Labor Statistics and conducted annually by the U.S. 
Census Bureau since 2003, measures the amount of time people spend doing various activities, 
such as sleeping, cooking, and driving [4]. Information collected by the ATUS includes the start 
and end times of each activity (in minutes), where each activity occurred (at home or away), and 
whether the activity was done for one’s job. Additional demographic information for each 
respondent, including age, sex, employment status, and region of residence, is also available. 

Data collected from the 2003-2023 surveys are used to create the statistically driven occupant 
behavior models used as part of this framework. Survey results include data from 245,139 
respondents with a total of 4,740,486 recorded activities. By analyzing this data, distinct 
correlations between activities respondents reported participating in and their demographic 
characteristics become apparent. By default, occupants are segmented into five categories based 
on their demographics: working male, nonworking male, working female, nonworking female, 
and child (ages 15–17). This categorization was also used in [5]. Previously, differences in 
behavioral patterns have been explored with respect to age, sex, household income, educational 
attainment, employment status, and employment type (e.g., full-time vs. part-time). Depending 
upon the requirements of the study, occupants can be recategorized as needed in LoadSim. 
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Analyzing the data available from the ATUS, based on the probability of occupants performing 
various activities, produces the following distribution for a working male (Figure 2.1). 

 

Figure 2.1 Activity distribution of a working male occupant (Sunday-Monday) 

Due to the tendency of those surveyed by the ATUS to report the start and end times of their 
activities to the nearest 15- or 30-minute increment (e.g., 12:00 am, 12:15 am), a simple moving 
average filter is applied over a 60-minute time span to smooth the results (Figure 2.2). 

 

Figure 2.2 Filtered activity distribution of a working male occupant (Sunday-Monday) 

Markov Chain Behavior Model 

ATUS data is used to construct a series of Markov chains, a stochastic process which utilizes 
transition probabilities (i.e., the probability of transitioning from one state to another) to 
determine which state to transition to next. Transition probabilities depend solely upon the 
current state and not upon the sequence of states preceding the current state (i.e., memoryless). 
A visual representation of a two-state Markov chain is shown in Figure 2.3, with states drawn as 
circles and the probabilities of transitioning from one state to another drawn as arrows between 
the states (e.g., the probability of transitioning from 𝑆𝑡𝑎𝑡𝑒 1 to 𝑆𝑡𝑎𝑡𝑒 2 is given by 𝑃1,2). 
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Figure 2.3 Example of a two-state Markov chain 

For the behavior models used in LoadSim, ten states (or activities) are defined. These activities 
were chosen based on data availability and their relationship to the most energy intensive 
residential end-uses. These activities, and their corresponding end-uses, are listed in Table 2.1. 

Table 2.1 Activities (Markov chain states) and corresponding residential end-uses 

ACTIVITY CATEGORY RESIDENTIAL END-USES 

1. Sleeping Lighting 

2. Grooming Water Heater 

3. Laundry Washer, Dryer, Water Heater 

4. Food Preparation Cooking, Refrigerator, Freezer, Water Heater 

5. Washing Dishes Dishwasher, Water Heater 

6. Watching Television Television 

7. Using Computer Computer 

8. Other Domestic N/A 

9. Away Lighting 

10. Driving Electric Vehicle, Lighting 

Because the likelihood of participating in each activity varies throughout the day, time varying 
Markov chains are developed on a one-minute time scale for each day of the week. First, each of 
the activities recorded by the ATUS is assigned to one of the ten categories shown above. Next, 
activity transitions are recorded to develop Markov chain matrices for each minute of the week. 
Mathematically, the probability of transitioning from one activity at time 𝑡, to another at time 

𝑡 + 1, can be represented as 𝑃𝑖,𝑗
𝑑,𝑚, where 𝑖 is the current activity, 𝑗 is the next activity, 𝑑 is the 

current day of the week, and 𝑚 is the current minute of the day [5]. The transition probabilities 
of a time varying Markov chain at any given time can be expressed as a 𝑛 × 𝑛 matrix, where 𝑛 is 
the number of possible states. In Figure 2.4, transition probabilities for an activity change 
occurring between 6:59 pm and 7:00 pm on a Sunday are shown. Each row represents the current 
activity state of an occupant, while the columns represent the next possible activity state. 



Page | 7 

 

Figure 2.4 Time varying Markov chain matrix 

Occupants are simulated using the Monte Carlo method of repeated random sampling. At each 
time step, a uniformly distributed pseudorandom number is generated and compared to the 
cumulative distribution of the possible activity transition probabilities to determine which activity 
transition occurs. Because occupant activity transitions are chosen stochastically, each simulation 
yields a distinct behavior pattern, which is valuable for exploring possible outcomes. 

Residential End-Use Modeling 

To make use of these behavior models, residential end-use models are developed based on 
technical characterizations of individual end-uses and their interactions with environmental 
conditions and occupant behaviors. End-uses modeled explicitly include space heating, space 
cooling, water heating, refrigerators, freezers, electric vehicle charging, clothes washers, clothes 
dryers, dishwashers, cooking, lighting, and various electronic devices. These end-uses can be 
broadly grouped into three categories (thermostatically controlled, deferable, and 
uninterruptible), each sharing similarities regarding their basic modeling approaches. Distributed 
energy resources (i.e., rooftop photovoltaics and battery energy storage), are also modeled. 

Thermostatically Controlled End-Uses 

Thermostatically controlled end-uses are those that are directly controlled by thermostat settings 
and indirectly controlled by environmental factors and occupant behavior. Within the residential 
sector, the largest and most common of these end-uses are space heating, space cooling, water 
heating, refrigerators, and freezers. From a modeling perspective, thermostatically controlled 
end-uses are the most complex to develop due to the need to model their unique thermal 
properties. Here, each of the developed models is composed of a series of first-order differential 
equations relating change in temperature to the temperature of the surroundings, the thermal 
properties of the system, and the amount of heat added or removed from the system. 
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Home/HVAC 

Within LoadSim, the thermal properties of a structure are characterized based on an equivalent 
thermal parameter model (often referred to as an RC model). Here, detailed parameters such as 
wall/roof/window insulation, thermal mass, and air infiltration are represented as a network of 
resistors and capacitors. Changes in temperature are related to internal heating gains (from 
occupants and loads), solar heating gains, heat added or removed by the HVAC system, and 
gains/losses between individual nodes. This general framework is commonly referenced in 
literature and other similar models (with varying levels of complexity) [6], [7], [8]. A 3R3C network 
is utilized in LoadSim, with nodes representing the air inside the home, internal mass of the 
contents of the home, and exterior surface area (i.e., envelope) of the home (Figure 2.5). 

 

Figure 2.5 Equivalent thermal parameter model of a home (3R3C network) 

Parameters captured include: outdoor air temperature, 𝑇𝑜𝑢𝑡, sol-air temperature, 𝑇𝑠𝑜𝑙−𝑎𝑖𝑟, 
indoor air temperature, 𝑇𝑖𝑛, temperature of the home’s internal mass, 𝑇𝑚𝑎𝑠𝑠, temperature of the 
home’s envelope, 𝑇𝑒𝑛𝑣, thermal mass of the air in the home, 𝐶𝑖𝑛, thermal mass of the home’s 
internal mass, 𝐶𝑚𝑎𝑠𝑠, thermal mass of the home’s envelope, 𝐶𝑒𝑛𝑣, thermal conductance of the 
home’s internal mass, 𝑈𝐴𝑚𝑎𝑠𝑠, thermal conductance of the home’s envelope, 𝑈𝐴𝑒𝑛𝑣, thermal 
conductance of the home’s windows, 𝑈𝐴𝑤𝑖𝑛, heat transfers to indoor air (from internal gains, 
infiltration, and HVAC), 𝑄𝑎𝑖𝑟, and heat transfers to the home’s internal mass (from solar), 𝑄𝑚𝑎𝑠𝑠. 
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Heat transfers within the home can be described by a set of first-order differential equations: 

𝐶𝑖𝑛 ∙
𝑑𝑇𝑖𝑛

𝑑𝑡
= 𝑄𝑎𝑖𝑟 − 𝑈𝐴𝑚𝑎𝑠𝑠 ∙ (𝑇𝑖𝑛 − 𝑇𝑚𝑎𝑠𝑠) − 2 ∙ 𝑈𝐴𝑒𝑛𝑣 ∙ (𝑇𝑖𝑛 − 𝑇𝑒𝑛𝑣) 

−𝑈𝐴𝑤𝑖𝑛 ∙ (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) 
(2.1) 

𝐶𝑚𝑎𝑠𝑠 ∙
𝑑𝑇𝑚𝑎𝑠𝑠

𝑑𝑡
= 𝑄𝑚𝑎𝑠𝑠 − 𝑈𝐴𝑚𝑎𝑠𝑠 ∙ (𝑇𝑚𝑎𝑠𝑠 − 𝑇𝑖𝑛) (2.2) 

𝐶𝑒𝑛𝑣 ∙
𝑑𝑇𝑒𝑛𝑣

𝑑𝑡
= −2 ∙ 𝑈𝐴𝑒𝑛𝑣 ∙ (𝑇𝑒𝑛𝑣 − 𝑇𝑖𝑛) − 2 ∙ 𝑈𝐴𝑒𝑛𝑣 ∙ (𝑇𝑒𝑛𝑣 − 𝑇𝑠𝑜𝑙−𝑎𝑖𝑟) (2.3) 

Thermal mass is calculated as shown in (2.4), (2.5), and (2.6), where 𝑉ℎ𝑜𝑚𝑒 is the volume of the 
home, 𝑐𝑝 is the specific heat of air (0.2403 Btu/lbm∙°F), 𝜌𝑎𝑖𝑟 is the density of the air in the home 

(0.075 lbm/ft3), and 𝐴ℎ𝑜𝑚𝑒 is the square footage of the home. In (2.4), the 4× multiplier was 
determined empirically to reflect typical HVAC cycling times. The total thermal mass per floor 
area, 𝜅𝑚𝑎𝑠𝑠, is estimated based on the product of an assumed internal mass of 8 lbm/ft2 [9] and 
a specific heat of 0.3 Btu/lbm∙°F [10]. Finally, assuming average construction, the thermal mass 
of the home’s envelope, 𝜅𝑒𝑛𝑣, is set to a default value of 6 Btu/°F∙ft2. This varies greatly by 
construction type (e.g., 2-3 Btu/°F∙ft2 for wood/siding, 8-16 Btu/°F∙ft2 for brick/concrete). 

𝐶𝑖𝑛 = 4 ∙ 𝑉ℎ𝑜𝑚𝑒 ∙ 𝑐𝑝 ∙ 𝜌𝑎𝑖𝑟 (2.4) 

𝐶𝑚𝑎𝑠𝑠 = 𝜅𝑚𝑎𝑠𝑠 ∙ 𝐴ℎ𝑜𝑚𝑒  (2.5) 

𝐶𝑒𝑛𝑣 = 𝜅𝑒𝑛𝑣 ∙ (𝐴𝑤𝑎𝑙𝑙 + 𝐴𝑟𝑜𝑜𝑓 + 𝐴𝑑𝑜𝑜𝑟) (2.6) 

Thermal conductance is calculated as shown in (2.7), (2.8), and (2.9). These equations take into 
account the insulation of the exterior walls, 𝑅𝑤𝑎𝑙𝑙, roof, 𝑅𝑟𝑜𝑜𝑓, doors, 𝑅𝑑𝑜𝑜𝑟, and windows, 𝑅𝑤𝑖𝑛, 

as well as the interior heat transfer, ℎ𝑖, for a vertical surface in still air (1.46 Btu/hr∙°F∙ft2) [11]. 
Additionally, lightweight furniture covering 40% of the home’s floor area is assumed [9]. 

𝑈𝐴𝑚𝑎𝑠𝑠 = ℎ𝑖 ∙ 0.4 ∙ 𝐴ℎ𝑜𝑚𝑒 (2.7) 

𝑈𝐴𝑒𝑛𝑣 =
𝐴𝑤𝑎𝑙𝑙

𝑅𝑤𝑎𝑙𝑙
+

𝐴𝑟𝑜𝑜𝑓

𝑅𝑟𝑜𝑜𝑓
+

𝐴𝑑𝑜𝑜𝑟

𝑅𝑑𝑜𝑜𝑟
 (2.8) 

𝑈𝐴𝑤𝑖𝑛 =
𝐴𝑤𝑖𝑛

𝑅𝑤𝑖𝑛
 (2.9) 

To inform the logic used for sizing HVAC systems (described later in more detail), a design thermal 
conductance is also derived, combing 𝑈𝐴𝑒𝑛𝑣, 𝑈𝐴𝑤𝑖𝑛, and air infiltration (or leakage). Here, 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 

represents the design infiltration volumetric air exchange rate (in air changes per hour). 

𝑈𝐴𝑑𝑒𝑠𝑖𝑔𝑛 =
𝐴𝑤𝑎𝑙𝑙

𝑅𝑤𝑎𝑙𝑙
+

𝐴𝑟𝑜𝑜𝑓

𝑅𝑟𝑜𝑜𝑓
+

𝐴𝑑𝑜𝑜𝑟

𝑅𝑑𝑜𝑜𝑟
+

𝐴𝑤𝑖𝑛

𝑅𝑤𝑖𝑛
+ 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 ∙ 𝑉ℎ𝑜𝑚𝑒 ∙ 𝑐𝑝 ∙ 𝜌𝑎𝑖𝑟 (2.10) 
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To model different housing types, physical properties are generalized, greatly simplifying the 
structural components needing to be defined (a barrier in similar tools). Of note, parameters for 
the shape of the home (ratio of depth to width), number of floors, and ceiling height are used to 
determine a home’s total exterior surface area. For single-family attached and multi-family 
dwellings, walls/roofs shared with adjacent housing units are ignored, decreasing exposure to 
environmental factors. Structures with fewer exposed surfaces tend to be internally dominated, 
with higher internal heat gains relative to gains/losses from the environment. Conversely 
envelope dominated structures are more strongly affected by environmental conditions. 

Table 2.2 Assumed physical characteristics by housing type 

PARAMETER 
SINGLE-FAMILY 

(DETACHED) 
SINGLE-FAMILY 

(ATTACHED)1 
MULTI-FAMILY 

(LOW-RISE)2 
DESCRIPTION 

𝑺𝒉𝒂𝒑𝒆 0.67 1.5 1.5 Shape of Home 

𝑵𝒇𝒍𝒐𝒐𝒓𝒔 2 2 1 Number of Floors 

𝑵𝒅𝒐𝒐𝒓𝒔 3 2 0 Number of Exterior Doors 

𝒉𝒄𝒆𝒊𝒍𝒊𝒏𝒈 8.5 ft 8.5 ft 8.5 ft Ceiling Height 

𝑬𝑾𝑭 1 0.6 0.35 Exterior Wall Fraction 

𝑬𝑹𝑭 1 1 0 (67%), 1 (33%) Exterior Roof Fraction 

𝑾𝑾𝑹 0.15 0.15 0.30 Window/Exterior Wall Ratio 

These assumptions are used to calculate the home’s remaining structural metrics, including the 
surface area of exterior walls, windows, and doors, 𝐴𝑡𝑜𝑡𝑎𝑙, surface area of the exterior roof, 
𝐴𝑟𝑜𝑜𝑓, surface area of exterior doors (assuming an average door size of 36"×80", or 20 ft2), 𝐴𝑑𝑜𝑜𝑟, 

surface area of exterior windows, 𝐴𝑤𝑖𝑛, and surface area of exterior walls, 𝐴𝑤𝑎𝑙𝑙𝑠. 

𝑉ℎ𝑜𝑚𝑒 = 𝐴ℎ𝑜𝑚𝑒 ∙ ℎ𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (2.11) 

𝐴𝑡𝑜𝑡𝑎𝑙 = 2 ∙ 𝑁𝑓𝑙𝑜𝑜𝑟𝑠 ∙ ℎ𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ∙ (Shape + 1) ∙ √𝐴ℎ𝑜𝑚𝑒 (𝑁𝑓𝑙𝑜𝑜𝑟𝑠 ∙ Shape)⁄ ∙ EWF (2.12) 

𝐴𝑟𝑜𝑜𝑓 = (𝐴ℎ𝑜𝑚𝑒 𝑁𝑓𝑙𝑜𝑜𝑟𝑠⁄ ) ∙ ERF (2.13) 

𝐴𝑑𝑜𝑜𝑟 = 20 ∙ 𝑁𝑑𝑜𝑜𝑟𝑠 (2.14) 

𝐴𝑤𝑖𝑛 = 𝐴𝑡𝑜𝑡𝑎𝑙 ∙ WWR (2.15) 

𝐴𝑤𝑎𝑙𝑙 = 𝐴𝑡𝑜𝑡𝑎𝑙 − (𝐴𝑑𝑜𝑜𝑟 + 𝐴𝑤𝑖𝑛) (2.16) 

While the representation of a home’s physical properties are somewhat simplified in LoadSim, 
the dynamics that are captured have been found to sufficiently model key demand impacts. 

 
 

1 Assumes a two-story structure comprised of three adjacent housing units (with shared side walls). 

2 Assumes a three-story structure comprised of twenty-four single-story dwellings (with shared walls/roofs). 
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Heat transferred to the air inside the home and the internal mass of the home are calculated 
using (2.17) and (2.18), where 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 represents the internal heat gains (from occupants and 
loads), 𝑄𝑖𝑛𝑓𝑖𝑙 represents the gains/losses due to infiltration , 𝑄ℎ𝑣𝑎𝑐 represents the heat added or 

removed by the HVAC system, and 𝑄𝑠𝑜𝑙𝑎𝑟 represents the heat gains from solar radiation. 

𝑄𝑎𝑖𝑟 = 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑄𝑖𝑛𝑓𝑖𝑙 + 𝑄ℎ𝑣𝑎𝑐 (2.17) 

𝑄𝑚𝑎𝑠𝑠 = 𝑄𝑠𝑜𝑙𝑎𝑟 (2.18) 

Internal heating gains are approximated as the sum of all sensible heating gains from occupants 
and loads (2.19). Heating gains from occupants (who are present in the home) are defined as a 
constant 220 Btu/hr per occupant [9]. Heating gains from end-use loads are estimated by 
multiplying the device’s current real power demand by a predefined heat gain fraction. 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 220 ∙ 𝑁𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 + ∑ 𝑃𝑙𝑜𝑎𝑑 ∙ 𝐻𝑒𝑎𝑡 𝐺𝑎𝑖𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑜𝑎𝑑 (2.19) 

The values provided in Table 2.3 are largely based on the sensible load fractions defined in [9]. 

Table 2.3 Assumed heat gain fractions by end-use 

END-USE HEAT GAIN FRACTION END-USE HEAT GAIN FRACTION 

HVAC Fan 1.0 Dishwasher 0.6 

Water Heater - Cooking 0.6 (Electric), 0.3 (Fossil Fuel) 

Refrigerator 1.0 Lighting 0.9 

Freezer 0.5 Electronics 1.0 

Electric Vehicle - Miscellaneous 0.9 

Clothes Washer 0.8 Rooftop PV - 

Clothes Dryer 0.15 or 1.0 (Electric), 0.1 (FF) Energy Storage - 

Infiltration, due to air leakage in a home’s envelope, is calculated based on the design infiltration 
volumetric air exchange rate, volume of air in the home, and temperature differential between 
the indoor and outdoor air (with additional adjustments based on wind speed (in m/s) [12]). 

𝑄𝑖𝑛𝑓𝑖𝑙 = 𝐼𝑑𝑒𝑠𝑖𝑔𝑛 ∙ 𝑉ℎ𝑜𝑚𝑒 ∙ 𝑐𝑝 ∙ 𝜌𝑎𝑖𝑟 ∙ 0.224 ∙ 𝑣𝑤𝑖𝑛𝑑 ∙ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) (2.20) 

The process for calculating solar heating gains through windows is simplified by considering only 
the diffuse and ground reflected irradiance components. Use of the direct component would 
require assumptions for both the orientation of the home and location of its windows. In (2.21), 
𝐼𝐷𝐻𝐼 is diffuse horizontal irradiance, 𝐼𝐺𝐻𝐼  is global horizontal irradiance, 𝜌𝑔 is surface albedo, and 

SHGC is the solar heat gain coefficient. A window/exterior transmission coefficient, WETC, of 0.6 
(representing the approximate shading due to an insect screen) is also assumed [Ref]. 

𝑄𝑠𝑜𝑙𝑎𝑟 = (
𝐼𝐷𝐻𝐼

2
+

𝐼𝐺𝐻𝐼 ∙ 𝜌𝑔

2
) ∙ 𝐴𝑤𝑖𝑛 ∙ SHGC ∙ WETC (2.21) 
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Similarly, sol-air temperature, which is used to account for solar heating gains through the 
envelope of the home, is calculated based on the assumption that vertical surfaces are shaded 
from the direct component (which is greatest during sunrise/sunset). Because the home’s 
envelope is treated as a single lumped parameter, irradiance incident to both the horizontal and 
vertical surfaces of the home are weighted based on relative surface area. Additional parameters 
which must be defined include the exterior heat absorption fraction (set to 0.6), α, and exterior 
heat transfer coefficient (6.0 Btu/hr∙°F∙ft2 in winter and 4.0 Btu/hr∙°F∙ft2 in summer), ℎ𝑜 [11]. 

𝑇𝑠𝑜𝑙−𝑎𝑖𝑟 = 𝑇𝑜𝑢𝑡 +
α ∙ 𝐼𝐺𝐻𝐼

ℎ𝑜
∙

𝐴𝑟𝑜𝑜𝑓

𝐴𝑤𝑎𝑙𝑙 + 𝐴𝑟𝑜𝑜𝑓 + 𝐴𝑑𝑜𝑜𝑟
 

+
α ∙ (

𝐼𝐷𝐻𝐼

2 +
𝐼𝐺𝐻𝐼 ∙ 𝜌𝑔

2
)

ℎ𝑜
∙ (1 −

𝐴𝑟𝑜𝑜𝑓

𝐴𝑤𝑎𝑙𝑙 + 𝐴𝑟𝑜𝑜𝑓 + 𝐴𝑑𝑜𝑜𝑟
) 

(2.22) 

Heat added or removed from the home by the HVAC system is calculated differently depending 
on the type of heating and cooling system present. Within LoadSim, a home’s heating and cooling 
equipment are sized based on the methodology outlined in [6]. A summary of this sizing logic is 
provided on the following page, with required input parameters described in Table 2.4. 

Table 2.4 HVAC sizing parameters 

PARAMETER VALUE/EQUATION DESCRIPTION 

𝑶𝑺𝑭 0.2 Oversizing Factor 

𝑳𝑳𝑭 0.3 Latent Load Fraction 

𝑻𝒉𝒆𝒂𝒕 Varies by Location (based on ASHRAE) Heating Design Temperature 

𝑻𝒉𝒆𝒂𝒕,𝒔𝒆𝒕 70 °F Heating Design Thermostat Setpoint 

𝑻𝒄𝒐𝒐𝒍 Varies by Location (based on ASHRAE) Cooling Design Temperature 

𝑻𝒄𝒐𝒐𝒍,𝒔𝒆𝒕 75 °F Cooling Design Thermostat Setpoint 

𝑸𝒅𝒊𝒈 167.09 ∙ 𝐴ℎ𝑜𝑚𝑒
0.442 Design Internal Gains3 

𝑰𝒅𝒑𝒔 195 ∙ 𝐴𝑤𝑖𝑛 ∙ SHGC ∙ WETC Design Peak Solar Radiation4 

More Coming Soon… 

  

 
 
3 Approximated against mean annual End-Use Load and Consumer Assessment Program consumption data [6]. 

4 195 Btu/hr∙ft2 assumes typical clear sky incident solar radiation for a latitude of 35 degrees [6]. 
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Water Heater 

Coming Soon… 

Refrigerator/Freezer 

Coming Soon… 

Deferable End-Uses 

Deferrable end-uses refer to any device that requires a specific amount of energy but allows for 
flexibility on when that energy can be supplied. Residential end-uses that can be placed into this 
category include electric vehicle charging, clothes washers, clothes dryers, and dishwashers. 

Electric Vehicle 

Coming Soon… 

Clothes Washer 

Coming Soon… 

Clothes Dryer 

Coming Soon… 

Dishwasher 

Coming Soon… 

Uninterruptible End-Uses 

Uninterruptible end-uses include those that demand energy continuously while in operation, but 
typically lack the flexibility of deferable end-uses. Cooking, lighting, and electronic devices, like 
televisions and computers, can be considered uninterruptible. Of these, lighting is the most 
complex and is tied to both occupant behavior and natural lighting levels. Cooking and electronics 
are the most simplistic, with energy demand being tied directly to occupant behaviors. 

Cooking 

Cooking end-uses include many different residential appliances such as conventional ovens, 
ranges, stoves, microwaves, and a variety of other countertop devices. Rather than modeling 
each of these individually, which would require extremely detailed time use data or assumptions 
relating to the probability of each appliance being used, cooking is modeled as a constant 
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instantaneous load which demands energy whenever an occupant is in the food preparation 
activity. While less detailed, this was found to be a sufficiently accurate approximation in [13]. 

Both electric and hybrid (i.e., electric and fossil fuel) options are modeled based on the assumed 
rated demand values provided in Table 2.5. Demand ratings of individual pieces of equipment 
may differ significantly from the values listed here, which were calibrated against [14]. For 
cooking, reactive demand is approximated based on a constant power factor of 0.95. 

Table 2.5 Cooking model parameters 

PARAMETER RATED DEMAND 

Cooking (Electric) 1,500 W 

Cooking (Electric/Fossil Fuel) 600 W (Electric), 6,500 Btu/hr (Fossil Fuel) 

Lighting 

Lighting demand is modeled based on the approach outlined in [15]. Here, three different lighting 
states are defined: 𝛷𝑎𝑐𝑡𝑖𝑣𝑒, when an occupant is present in the home and awake, 𝛷𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒, when 
an occupant is present in the home and asleep, and 𝛷𝑎𝑏𝑠𝑒𝑛𝑡, when an occupant is away from the 
home. Constant lighting demand is assumed for both the inactive and absent states, while 
lighting demand in the active state is defined as shown in (2.23), where 𝛷𝑚𝑖𝑛 and 𝛷𝑚𝑎𝑥 represent 
the minimum and maximum lighting levels demanded by a home’s occupants, 𝐸𝑠𝑜𝑙𝑎𝑟 is the 
incident solar illuminance, and 𝐸𝑙𝑖𝑚𝑖𝑡 is an empirically estimated limiting factor of 5,000 lux 
(which is allowed to vary by a maximum of ±3 standard deviations per household, σ = 500 lux). 

𝛷𝑎𝑐𝑡𝑖𝑣𝑒 = {
𝛷𝑚𝑖𝑛 ∙

𝐸𝑠𝑜𝑙𝑎𝑟

𝐸𝑙𝑖𝑚𝑖𝑡
+ 𝛷𝑚𝑎𝑥 ∙ (1 −

𝐸𝑠𝑜𝑙𝑎𝑟

𝐸𝑙𝑖𝑚𝑖𝑡
) 𝐸𝑠𝑜𝑙𝑎𝑟 < 𝐸𝑙𝑖𝑚𝑖𝑡

𝛷𝑚𝑖𝑛 𝐸𝑠𝑜𝑙𝑎𝑟 ≥ 𝐸𝑙𝑖𝑚𝑖𝑡

 (2.23) 

Using this approach, demand for lighting is limited by the current level of daylight. As a result, in 
the middle of the day when the sky is brightest, occupants will demand less artificial lighting than 
in the evening hours when natural lighting levels are minimal. Because occupants do not adjust 
lighting levels immediately following a change in daylight levels, lighting is adjusted incrementally 
based on an assumed probability (approximately once every 15 minutes). While an occupant is 
in an active state, lighting levels are only altered if an incremental adjustment of ∆𝛷 will bring 
the current lighting level closer to an occupant’s desired lighting level. Instantaneous lighting 
level adjustments occur when an occupant transitions from an active state to an inactive or 
absent state, or vice versa. This corresponds to an immediate change in lighting levels whenever 
an occupant goes to sleep, wakes up, leaves, or returns home. A summary of the values used in 
this model is given in Table 2.6. These values are assigned on an occupant-by-occupant basis, 
with the percentage of occupants assigned a specific value shown in parentheses. 
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Table 2.6 Lighting model parameters 

PARAMETER VALUES 

𝜱𝒊𝒏𝒂𝒄𝒕𝒊𝒗𝒆 0 lm (60%), 800 lm (40%) 

𝜱𝒂𝒃𝒔𝒆𝒏𝒕 0 lm (60%), 800 lm (40%) 

𝜱𝒎𝒊𝒏 800 lm (80%), 1,600 lm (20%) 

𝜱𝒎𝒂𝒙 3,200 lm (60%), 4,000 lm (40%) 

∆𝜱 800 lm 

To estimate incident solar illuminance from the available meteorological data, various methods 
for calculating luminous efficacy (a measure of how well a light source produces visible light) 
were considered. In [16], it is explained that assuming a constant value for solar luminous efficacy 
can produce reasonably accurate results in most instances. For this reason, a constant luminous 
efficacy of 120 lm/W is assumed for sunlight. Solar illuminance incident to vertical surfaces (i.e., 
windows) is calculated based on (2.24), where 𝐼𝐷𝐻𝐼, is diffuse horizontal irradiance, 𝐼𝐺𝐻𝐼, is global 
horizontal irradiance, and 𝜌𝑔 is the surface albedo. The direct irradiance component is assumed 

to be shaded, as accounting for this would require assumptions for both the orientation of the 
home and location of its windows. A window/exterior transmission coefficient, WETC, of 0.6 
(representing the approximate shading due to an insect screen) is also assumed [Ref]. 

𝐸𝑠𝑜𝑙𝑎𝑟 = 120 ∙ (
𝐼𝐷𝐻𝐼

2
+

𝐼𝐺𝐻𝐼 ∙ 𝜌𝑔

2
) ∙ WETC (2.24) 

To build upon approach described in [15] and model different lighting types, the power required 
to produce an output of 800 lm, ∆𝛷, is defined by lighting type (60 W for incandescent, 43 W for 
halogen, 14 W for compact fluorescent, 12 W for linear fluorescent, and 9 W for LED). Lighting is 
then assigned in a home on a light-by-light basis for each occupant and adjusted incrementally 
as described. Reactive power is approximated based on assumed constant power factors of 1.00 
(incandescent and halogen), 0.92 (compact fluorescent), 0.95 (linear fluorescent), and 0.90 (LED). 
Finally, demand values are scaled by a factor of 1.2, based on a calibration against [17]. 

Electronics 

As with cooking, modeling every electronic device would require either extremely detailed time 
use data or many different assumptions with regards to the use of each device. Additionally, 
because most electronics have a relatively small impact on the overall demand of the residential 
sector, only the most common electronic devices have been modeled. Televisions and computers 
are represented as constant power instantaneous loads. Whenever an occupant is engaged in 
these activities, the rated power is demanded. When these devices are not in use, they are 
assumed to be in standby mode [18]. As a result, demand can be represented by (2.25) 

𝑃 = {
𝑃𝑟𝑎𝑡𝑒𝑑 𝐼𝑛 𝑈𝑠𝑒

𝑃𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑁𝑜𝑡 𝑖𝑛 𝑈𝑠𝑒 (2.25) 
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A maximum of two televisions (for > 3 occupants) and one computer are allowed to be active in 
a home at any given time. Assumed demand values are provided in Table 2.7. For both televisions 
and computers, reactive demand is approximated based on a constant power factor of 0.90. 

Table 2.7 Electronic model parameters 

PARAMETER RATED DEMAND 

Television 180 W (Rated), 0 W (Standby) 

Computer 200 W (Rated), 20 W (Standby) 

Miscellaneous 

While the largest and most common residential end-uses are considered in LoadSim, it is both 
impractical and unnecessary to model every possible load. As a result, some level of demand will 
remain unaccounted for. To address this, an additional demand of 60 W per occupant is defined. 
This value is derived against [14] and remains constant over time (i.e., is not affected by occupant 
behavior). Reactive demand is approximated based on a constant power factor of 0.90. 

Distributed Energy Resources 

Coming Soon… 

Rooftop Photovoltaics 

Coming Soon… 

Energy Storage 

Coming Soon… 

Energy Management 

Coming Soon… 
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3 SIMULATION AND VALIDATION 

Simulation Structure 

LoadSim can be used to evaluate residential demand by end-use on a daily (e.g., peak conditions) 
or even annual basis. The framework utilizes a variable simulation time step, with a focus on 
evaluating sub-hourly impacts, and is typically run at a 1- or 5-minute resolution.  Simulations can 
be run for many homes, resulting in smooth diversified load shapes typical of existing tools, or 
for a small number of homes, demonstrating the large fluctuations that may be seen by a 
distribution transformer or community energy system. Required meteorological and solar data is 
obtained from [19]. Demographic data from the U.S. Census Bureau and U.S. Bureau of Labor 
Statistics are used to set the number and type of occupants in each simulation, while technology 
saturation data from [14] and [17] are used to set the share of each technology type. 

To demonstrate the potential applications of LoadSim, a variety of modeling use-cases are 
described in [1] and [2]. Examples of those outputs are shown in Figure 3.1 and Figure 3.2. 

 

Figure 3.1 Simulated impact of rooftop PV and energy storage adoption (peak solar day) 

 

Figure 3.2 Simulated impact of changing climate conditions (annual) 
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Model Validation 

One of the primary challenges with bottom-up modeling is the number of parameters which must 
be defined. While steps have been taken previously to validate end-use consumption estimates, 
for example the water heating model was optimized against actual lab data in [20], a 
comprehensive validation effort across all end-uses had not been performed. To address this 
shortcoming, [2] aimed to validate LoadSim based on an assessment of three key factors: 

1. Individual end-use characteristics. As a foundational element to the bottom-up approach 
utilized, careful consideration is given to defining end-use specific parameters (such as 
rated demand, cycle duration, and cycle frequency) based on a review of various surveys, 
simulation protocols, and codes and standards. Because these parameters can typically 
be defined using real-world metrics, they are given precedence over many other aspects 
of the model, with only minor adjustments made during the refinement process. 

2. Annual energy consumption. Here, a focus on accurately modeling the relative share of 
each end-use with respect to total household consumption is undertaken. Both electric 
and fossil fuel consumption estimates are evaluated against available data. 

3. Diversified load shapes. The overall magnitude, timing, and ramp rate of demand reflects 
the relative responsiveness of each end-use model to external variables (i.e., behavior 
and environment). Fine tuning of these interactions is done on a case-by-case basis. 

Space Conditioning 

Space heating and cooling estimates were benchmarked against EnergyPlus, a whole building 
energy simulation program whose ongoing development is funded by the U.S. Department of 
Energy [21]. Modeled results for single and multi-family households from [22] were evaluated for 
New York City. Direct comparison is difficult due to the bottom-up nature requiring a significant 
amount of input assumptions (some of which do not have direct corollaries between the two 
models). Where possible, metrics shared between the two models were aligned (e.g., square 
footage, insulation-levels, thermostat settings, and design temperatures). A comparison of 
demand estimates produced by LoadSim and EnergyPlus is shown in Figure 3.3 and Figure 3.4. 
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Figure 3.3 LoadSim and EnergyPlus comparison (8760 and billing demand, space conditioning) 

Overall, differences between the results are minor. Both summer and winter peaks are captured 
well, with only minor adjustments to the default assumptions used in LoadSim. Differences are 
most apparent during shoulder months (where different rules for transitioning between heating 
and cooling modes are used) and off-peak winter months (where EnergyPlus was inadvertently 
set to restrict the simultaneous operation of heat pump and auxiliary heating components). 

 

 

Figure 3.4 LoadSim and EnergyPlus comparison (average daily demand, space conditioning) 

The magnitude, timing, and ramp rate of average daily demand over both the summer and winter 
seasons aligns closely as well. For multi-family dwellings, differences between how internal heat 
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gains from occupants and loads are approximated is the main driver for variations between the 
two models. Comparisons for additional climate zones were completed on an annual basis, with 
LoadSim able to sufficiently represent the complexities of EnergyPlus in a reduced-order form. 

Other End-Uses 

End-use technologies which are less climate dependent, and instead driven primarily by 
behavioral patterns, were benchmarked against annual electric and fossil fuel consumption data 
from the 2020 Residential Energy Consumption Survey (RECS) and 2020 U.S. Lighting Market 
Characterization (LMC). A comparison of annual electric consumption is shown in Figure 3.5. 

 

Figure 3.5 LoadSim and 2020 RECS/LMC comparison (annual electric consumption) 

Average daily demand for each end-use was evaluated against profiles referenced in [9] and [23]. 
In some instances, adjustments were made to the interactions between various activity 
categories and end-uses (e.g., decreasing the likelihood of an occupant initiating a dishwasher 
cycle while in the washing dishes activity), further fine tuning the behavior model linkages. Only 
minor refinements where necessary, with modeled results closely following expected values. 
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