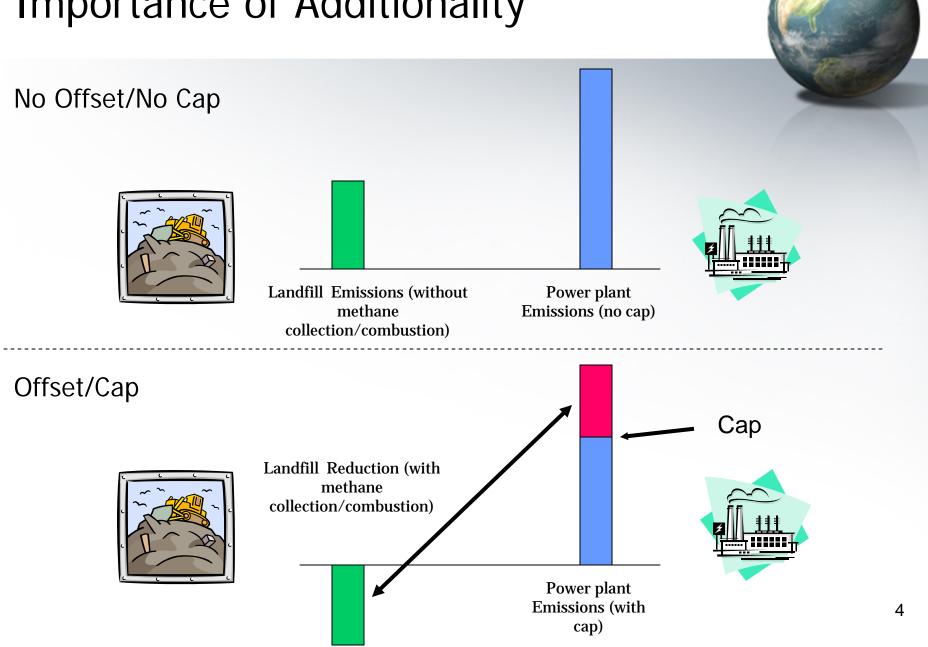

Applying a Performance Standard Approach to Determine Additionality – USEPA Climate Leaders Program

Maurice LeFranc
Senior Policy Analyst, Climate Change
Division
U.S. Environmental Protection Agency

EPRI Offsets Workshop September 9, 2008


- Background on Climate Leaders Program
 - Description of USEPA Accounting Protocols
- Additionality Discussion
- Project Examples
 - Commercial boilers
 - Manure management: anaerobic digesters
 - Afforestation/Reforestation

Offsets in USEPA Climate Leaders Program

- Climate Leaders is an EPA industry/government partnership that works with companies to develop comprehensive climate change strategies
 - Partner companies (numbering more than 200) commit to setting aggressive greenhouse gas reduction goals and annually reporting progress to EPA
- An important objective of the Climate Leaders program is to focus corporate attention on achieving cost-effective reductions within the boundary of the organization
- Partners may also use reductions and/or removals that occur outside of their corporate boundary (i.e., external reductions or offsets) to help to meet their goals
- EPA's Climate Change Division has developed offset guidance based on a top-down performance standard approach to address additionality and to select and set the baseline

Importance of Additionality

Additionality - Applied

- Until a program or policy defines additionality it simply a theoretical discussion
 - How many angels can fit on the head of a pin?
 - What would otherwise occur?
- Additionality must be defined in the context of the objectives of the program of concern (either cap-and-trade or voluntary).
- Additionality should be determined for each project type included in an offsets program
- Any project that meets or exceeds the performance threshold is considered "additional" or beyond that which would be expected under a "business as usual" scenario
- "Realistic" objective Minimize risk of accepting a project that is not additional or rejecting a project that is additional

Key Elements of Accounting Methodology

- Establish Regulatory Eligibility Conditions
- Define Terms for Additionality Determination
- Quantify Emission Reductions
 - Pre-project:
 - Selecting and setting baseline
 - Estimating project emission reductions
 - Post-project:
 - Monitoring
 - Quantifying actual project emissions and reductions

Additionality Defined - USEPA

- Proposed projects are required to demonstrate that they are additional by achieving a level of performance that, with respect to emission reductions or removals, or technologies or practices, is significantly better than business-as usual
 - Business-as-usual is determined by assessing performance of similar, recently undertaken or planned practices, activities or facilities in a relevant geographic area

Performance Standard Approach

- "Additionality" based on an analysis of a relevant sector in a specific spatial area
 - Data from (1) historic, (2) planned or (3) projections
 - Proxy for barriers, financial decisions and "intent" tests
- "Recent" historic performance is proxy for "near " future performance
- Performance standard is specific to project type
 - Comprised of performance threshold (additionality determination) and baseline
 - Emissions rate, practice standard, technology standard
- Performance standard is periodically updated
 - Reflects continuous performance improvements in sector (e.g., changes in regulations, market trends, and technology developments are reflected in updates)
 - Adjustments made to "proposed projects," not to existing

Advantages of Performance Standard Approach

- Project developers are aware of the accounting "rules" in advance
 - Methodologies prepared for specific set of project types
 - Equations needed for estimating and calculating emissions and reductions/removals are provided
- Reduces the complexity, cost and subjectivity of constructing individual project-specific arguments and subsequent review
- Historic "performance" is a proxy for what will occur; periodically update to reflect improvements
- Overall, consistent with WRI/WBCSD GHG Project Protocol, CCAR, RGGI
- Can be used for a variety of project types (sectors and geographic areas)

Additionality Determination – Commercial Boilers (1)

The type of performance threshold used for a commercial boiler project is an emissions rate. The threshold represents a level of performance (emissions rate) that is beyond that expected compared to the efficiencies of recently installed boilers. For both retrofits and new construction, a performance threshold of approximately the top 20th percentile has been selected.

Table Ia. Recently installed commercial boilers in New Jersey (1999)

Project Type	Electric	Natural Gas	Oil
New Construction	0%	95%	5%
Renovation	34%	66%	0%
Grand Total	14%	83%	3%

Additionality Determination - Commercial Boilers (2)

Table Ic. Commercial Boiler Performance Thresholds Based on Emissions-Intensity criteria (1990-2003 CBECS Data)

	Percentage of regional use in boilers - 1990-2003							
	North- east	Mid- west	South	West				
Fuel Oil Boilers	7.9%	1.7%	0.6%	1.2%				
Fuel Gas Boilers	43.0%	46.1%	35.6%	43.9%				
Electric Boilers	49.1%	52.2%	63.8%	54.8%				
Estimated boiler efficiency at 25th percentile	82%	82%	81%	82%				
Estimated boiler efficiency at 20th percentile	83%	83%	82%	83%				
Estimated boiler efficiency at 10 th percentile	85%	85%	84%	85%				
Performance threshold at 25th percentile (KgCO ₂ /MMBtu) Performance threshold at 20th	64.7	64.7	65.5	64.7				
percentile (KgCO ₂ /MMBtu)	63.9	63.9	64.7	63.9				
Performance threshold at 10th percentile (KgCO ₂ /MMBtu)	62.4	62.4	63.2	62.4				

Source: Energy Information Administration, 2003 Commercial Buildings Energy Consumption Survey.

Additionality Determination – Commercial Boilers (3)

Table 1. Performance Thresholds for Boiler Projects

Commercial Boiler Project Type	Project Fuel Type	Thermal Efficiency	Performance Threshold, Emissions per Heat Output (KgCO ₂ /MMBtu)			
Retrofit	Oil-fired	86%		85		
	Natural Gas-fired	84%		63		
New Construction	All fuels	84%		63		

Additionality Determination – Manure Management: Anaerobic Digesters (1)

Additionality measure for manure methane anaerobic digester projects is practice based. The threshold represents a level of performance (practice) that is beyond that expected of a typical manure management system, and is based on the suite of current technologies and common practices taking into account state minimum requirements for waste systems for each animal type.

Table Ia. Dairy and Swine Operations in the U.S. by Manure Management System

	Number of Operations by Manure Management System										
Animal	P/R/P		Anaerobic Digester		agoon	Liquid/ Slurry	Solid Storage	Deep Pit	Total		
Dairy	72,487		62		4,453	4,345	9,494	1,147	91,989		
Swine	53,230		18		6,571	6,303	1,129	11,643	78,894		

Aerobic digesters in place on:

Dairy farms:

0.06%

Swine farms:

0.02%

Additionality Determination – Manure Management: Anaerobic Digesters (2)

Table Ic. Distribution of Dairy and Swine Operations by Geographic Location

		Number of Operations by Geographic Location								
			Anaero				Liquid/	Solid		
A nim al	U.S. Region	P/R/P	Di ge s <mark>t</mark> er		La	agoon	Slurry	Storage	Deep Pit	Total
Dairy	West	1,460		21		1,639	916	936	221	5,192
	Central	3,244		2		1,634	1,061	1,514	399	7,854
	Midwest	45,748		24		238	202	36	0	46,248
	South	2,890		1		300	205	430	22	3,848
	Mid-Atlantic	19,146		14		643	1,962	6,578	505	28,847
Swine	West	3,891		1		29	33	5	58	4,017
	Central	10,255		8		143	133	24	248	10,812
	Midwest	21,811		5		5,112	5,542	959	9,989	43,418
	South	5,732		0		190	122	24	245	6,313
	Mid-Atlantic	11,541		4		1,097	473	116	1,104	14,334

W est = AK, CA, HI, OR, WA

Central = AZ, CO, ID, MT, NV, NM, OK, TX, UT, WY

M idw est = IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, SD, WI

South = AL, AR, FL, GA, LA, MS, SC

Mid-Atlantic = CT, DE, KY, ME, MD, MA, NH, NJ, NY, NC, PA, RI, TN, VT, VA, WV

Additionality Determination – Manure Management: Anaerobic Digesters (3)

Table Ib. Distribution of Dairy and Swine Operations by Manure Management System and Farm Size

		Number of Operations by Farm Size									
Animal	Farm Size	P/R/P	An aero bic Digester		J	Lagoon	Liquid/ Slurry	Solid Storage	Dee p Pit	Total	
Dairy	=500 head	320		48	\overline{I}	1,614	675	245	·	2,902	
	200-499 he ad	3,213		9		617	653	54	_	4,546	
	1-199	68,954		5		2,223	3,017	9, 195	1,147	84,541	
Swine	>2000 he ad	-		14		2,581	1,084	297	2,774	6,749	
	200-2000 h ead	-		3		3,990	5,219	832	8,869	18,913	
	1-199 he ad	53,230		1		-	-		-	53,231	

Additionality Determination – Afforestation/Reforestation

The type of performance threshold used for eligible reforestation/afforestation projects is practice-based.

The practice-based performance threshold represents a level of "performance" that is beyond that expected for the management of cropland or pasture, specifically regarding typical practices to convert such lands to forest.

Pre-project Planning

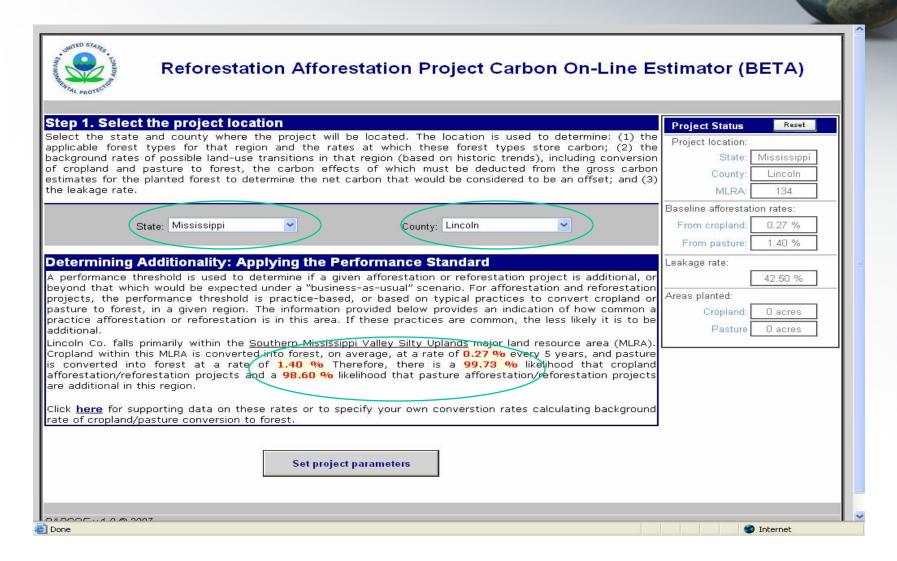
Reforestation Afforestation Project Carbon On-Line Estimator (BETA)

Welcome to the Reforestation/Afforestation Project Carbon On-Line Estimator (RAPCOE)

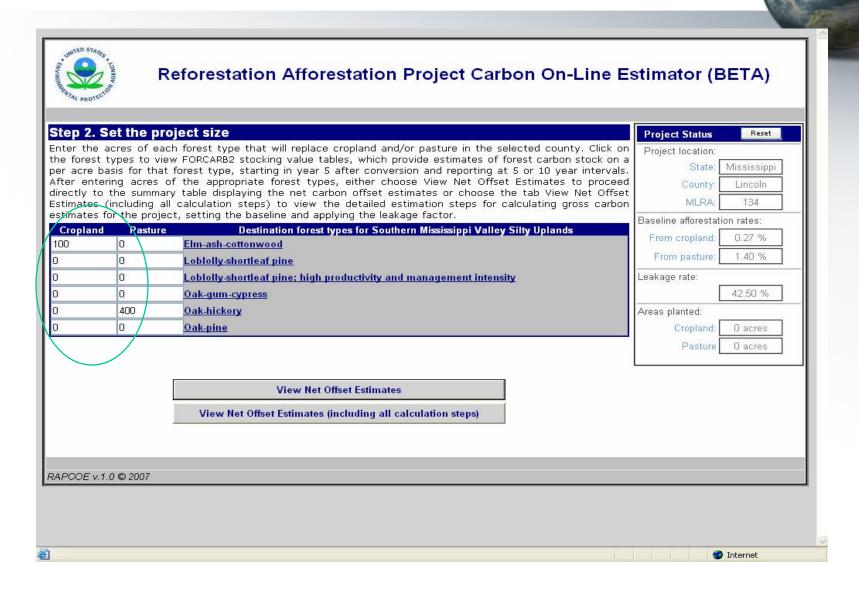
The Reforestation/Afforestation Project Carbon On-line Estimator allows you to estimate the net carbon offset produced by a reforestation or an afforestation project in the United States. For the purposes of this tool, reforestation and afforestion are the same activity, that of converting cropland and/or pasture to forest. The net offset is equivalent to the amount of carbon sequestered by the conversion to forest (gross carbon offset), less the amount of carbon estimated to have been sequestered had no project occurred (baseline), and less any CO2 released elsewhere as a result of this project occurring (leakage deduction).

With this tool, net offsets can be estimated for both (1) proposed reforestation/afforestation projects, for which gross offsets are not known and must be estimated from existing carbon stock accumulation tables (pre-project planning)-- and (2) projects already underway -- where the gross offsets have been measured or verified (post-project monitoring). Click the appropriate tab below to choose the net offset calculation you wish to execute.

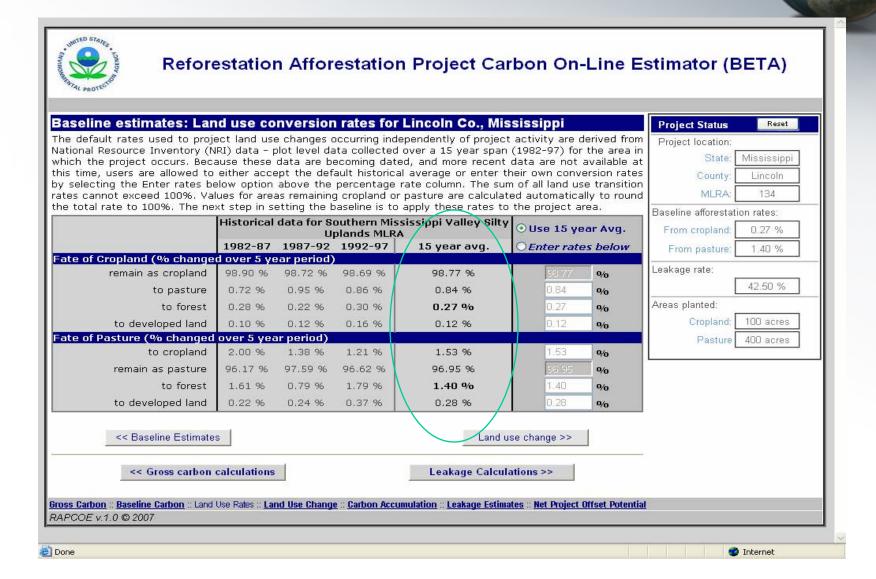
Pre-project planning tool
Click to estimate net offsets

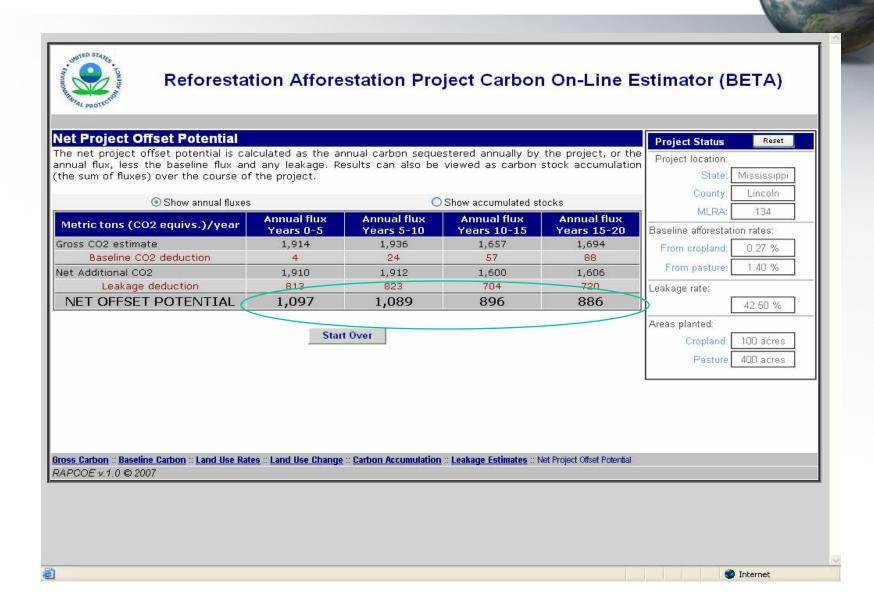

for a planned project.

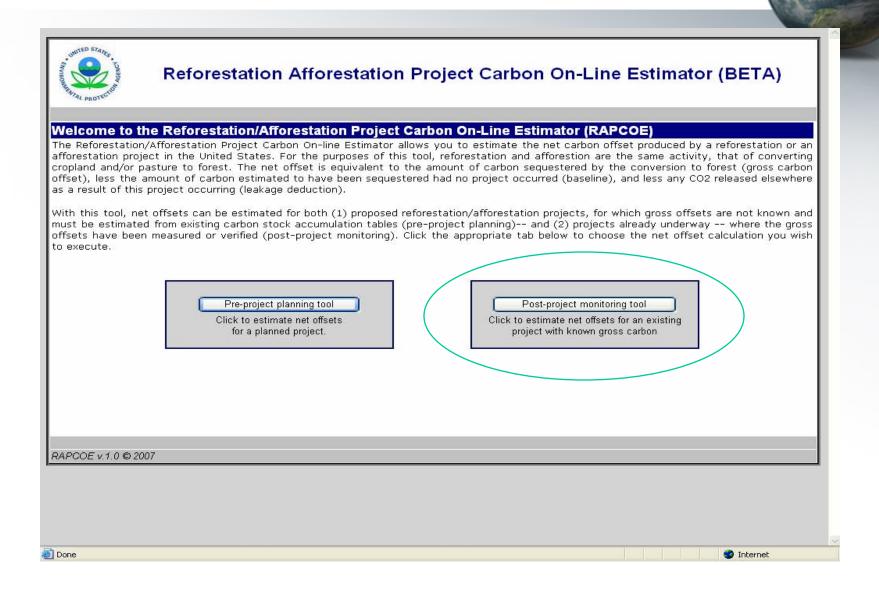
Post-project monitoring tool


Click to estimate net offsets for an existing project with known gross carbon

RAPCOE v.1.0 @ 2007


Project Location/Additionality Determination


Selecting Project Parameters


Setting the Baseline: Land-Use Conversion Rates

Net Offset Calculations

Post-project Monitoring

Climate Leaders Accounting Protocols

- Landfill methane (Practice-standard)
- Manure management anaerobic digester (Practice-standard)
- Afforestation/reforestation (Practice-standard)
- Commercial/industrial boilers (Emissions rate/Technology Standard)
- Transportation bus fleet (Emissions rate)
- End-use landfills and manure management (Emissions rate)
- Forest management (in development) (Practice-standard)
- Coal-mine methane (in development) (Practice standard)

Contact Information

- Maurice LeFranc (<u>lefranc.maurice@epa.gov</u>)
- Melissa Weitz (<u>weitz.melissa@epa.gov</u>)
- Kimberly Todd (<u>klunich.kimberly@epa.gov</u>)

Resources

 Climate Leaders Offset Methodologies and Guidance (www.epa.gov/stateply/resources/optional-module.html)